omsz
>>
     OMSZ       IDŐJÁRÁS      ÉGHAJLAT      LEVEGŐKÖRNYEZET      ISMERET-TÁR   
OMSZ főoldal |  Szolgálatunkról |  Pályázatok, projektek |  Rendezvények |  Irodalom 
Felbontás: KicsiFelbontás: NormálFelbontás: KözepesFelbontás: NagyobbFelbontás: Nagy Copyright © 
Contents

THE RELIABILITY OF PRECIPITATION MEASUREMENTS AT HIGH MOUNTAINS - AMOUNTS IN DEPENDENCE OF INSTRUMENTS AND SITES.
Ingeborg Auer and Wolfgang Schöner
Central Institute for Meteorology and Geodynamics, A-1190 Vienna
tel: +43 1 36026 2206
fax: +43 1 36026 72
email: ingeborg.auer@zamg.ac.at
wolfgang.schoener@zamg.ac.at

INTRODUCTION:

A considerable number of papers have been written about the possibilities and even more about the "inpossibilities" of measuring precipitation at high alpine regions. High wind speeds, low temperatures, a high percentage of solid precipitation and an increased probability of roar-frost are the limiting factors for precipitation measurements in such regions.
In Austria three different types of precipitation measuring systems (manned rain gauges, totalisers -shielded or unshielded, automatic systems) have been in use since many years. The following investigation focuses on one selected region in the Goldberggruppe / Hohe Tauern and dealing with problems and intercomparisons of different precipitation measuring systems at the Sonnblick Observatory located on a mountain top in 3106 m asl.

NETWORK AND INSTRUMENTS

The database of the investigation is shown in Table 1 and Figure 1 respectively. All instruments are located in a rectangle between 46°40'- 47°30' N and 12°40'-13°15'E.

Table 1:
Precipitation network in the Sonnblick region
Cont. Table 1:
Precipitation network in the Sonnblick region
T: Totaliser, RG: rain gauge 200cm2 or 500cm2, TP: tipping bucket, WG: weighing gauge
Figure 1:
The network
THE AUTOMATIC PRECIPITATION MEASUREMENTS

In Auer, 1992 a comparison of the rain gauge South (OS) and the nearby weighing gauge (WG1) showed a surplus of precipitation for the weighing gauge of 33 mm for a period of three months (September - November 1991). However, this study clearly showed that this surplus was due to 33 days where the weighing gauge registered precipitation although there was no precipitation at all. In the meantime much effort has been undertaken to rise the quality of the measurements. A comparison between the weighing gauge and the manual gauge for the period January 1998 - September 1999 is shown in Figure 2. During these 17 months the weighing gauge provided reliable results in respect to amount and time resolution. The correlation coefficients of the daily values between the two gauges exceed 0.7 most of the time (comp. Fig. 2). There is also a good agreement between weighing gauge and the totaliser TG4 (comp. Fig. 3). The correlation coefficient based on monthly sums between WG1 and TG4 come to r= 0.79 for the period January 1988 - September 1999. Moreover the measurements of the weighing gauge are able to confirm the measurements of the totalisers with annual precipitation amounts of 2500 mm.

Figure 2:
Correlation coefficients of daily precipitation sums between the weighing gauge (WG1) and manned rain gauge (OS) on Sonnblick Observatory (January 1998 - September 1999)
Figure 3:
Monthly precipitation sums on Sonnblick from January 1988 till September 1999 measured by three different rain gauges.
LONG TERM PRECIPITATION SERIES

In Auer, 1993 a long-term series for grid point 13 deg E and 47 deg N was evaluated from homogenised long term precipitation series. The deviations to this grid point of some selected stations are shown in Figure 4. Out of these the valley station Bad Gastein fits best to this grid point. On the contrary, the long term series of rain gauge North (ON) gives a picture far from any reality and unfortunately, cannot be used for any statistical time series analyses. The rain gauge South (OS), and best of them the totaliser TG4 seem to provide better results.

Figure 4:
Deviations of single precipitation time series in the Sonnblick region from the grid point series for GP 13E and 47 N.
CORRELATION COEFFICIENTS

Table 2 shows the correlation coefficients between precipitation series in the Sonnblick region for the period 1961-1990, split into two profiles north and south of the alpine main crest including the valley stations which normally show a higher accuracy of the measurements. The highest correlation overall occurs between TF1 and TF3 between May and September and TG4 and TG5 in the winter season.
The valley station Rauris (profile north) is best correlated to the totalisers TG1 and TG3 from October to April. Concerning the measurements on the mountain top the totalisers give better results than the two rain gauges. Due to a higher percentage of convective precipitation events the correlation coefficients are in summer smaller than in winter. Nevertheless the totalisers are higher correlated to the valley station than the rain gauges ON and OS. On the contrary, the valley station Heiligenblut (south profile) shows in winter the best agreement to the rain gauge on the north side of the observatory. In summer a higher correlation appears to the totalisers TF1 and TF3 compared to the rain gauge ON.

Table 2:
Correlation matrix for precipitation series at and around Sonnblick Observatory, 1961-1990 measured by different rain gauges. Values for the year (January-December), Winter (October - April) and summer (May- September)
  ON, OS, O.Rauris, O.Heiligenblut: Ombrometer Sonnblick North, Sonnblick South, Rauris, Heiligenblut
  TG1, TG2, TG3, TG4, TG5: totalisers near Goldbergkees: Kolm-Saigurn, Radhaus, Rojacherhütte,
Sonnblick (horizontal orifice, Sonnblick (tilted orifice)
  TF1, TF3: Totalisers near Kleines Fleißkees
COMPARISONS TO WINTER MASSBALANCE (SNOW WATEREQUIVALENT)
MEASUREMENTS AT NEARBY GLACIERS

Since 1986/87 winter mass balance measurements have been carried out on the glacier Goldbergkees (Schöner, 1995), which may be interpreted as an "independent, external rain gauge". Two of the profiles Lieslstange und Bockpalfen will be compared with the precipitation measurements on Sonnblick. Lieslstange is situated a little bit lower, but quite near to the Observatory with an altitude off 3000 m, Bockpalfen more centralised on Goldbergkees in an altitude of 2680 m asl. Additionally to profiles from the nearby glacier Wurtenkees (Chemieprofil in 3000 m asl and P5 in 2650 m asl., Auer et al., 1995) are included as well. Fig.5 shows these comparisons, and Tab.3 lists the correlation coefficients.

Highest correlation values to the winter mass balance measurements on Goldbergkees occur at OS and TG1 followed by TG4 on the mountain top and TG3 Rojacherhütte. The worst representation of the water equivalent of the accumulated snow on the glacier is given by TG2 and ON. The Chemieprofil correlates best with OS, P5 with the TG1 Kolm-Saigurn. Besides the correlations also the total amounts are of interest. Inspite of the high correlation between OS and the accumulated winter snow OS shows a great deficiency. Concerning precipitation amounts the totalisers provide better results.

Table 3:
Correlation coefficients between precipitation amounts measured by rain gauges (or totalisers) and estimated from winter mass balance measurements for the glaciological winter (October - April)
Figure 5:
Time series of precipitation sums during the glaciological winter (October to April) in the Goldberggruppe estimated by totalisers, ombrometer and winter mass balance measurements
CONSEQUENCES FOR PRECIPITATION MAPS

Including or excluding the values of totalisers in regard to precipitation maps makes a great difference in the final outcome by using the same methods of map construction. This was shown in Auer et. al, 2000, where precipitation maps for the Sonnblick region were computed for the period 1961-1990 using or excluding the totaliser values. The maps were produced in Arcview, GIS using a Wedge-filter application along the alpine main ridge..
Below 1500 m altitude only small differences occurred, whereas big differences characterised the alpine main ridge itself. For the annual precipitation amount the deficiency exceeded more than 1000 mm in the summit region and higher parts of the northern inclines, the southern region was less affected. The deficit during summer season exceeded 700 mm.

CONCLUSIONS

The paper intended to compare the results of different methods of precipitation measurements. Advantages as well as disadvantages of the various instruments were pointed out. For precipitation information with a high resolution in time the weighing gauge gives the most reliable information. The ombrometer on the south side of the Sonnblick Observatory provides good correlation results to the independent winter mass-balance measurements but the total amount of precipitation is underestimated. Totalisers give best results of monthly amounts, but the time resolution is insufficient.

REFERENCES

Auer, I., 1992: Precipitation Measurements in a high Alpine Region- inter-comparisons of different measuring systems. TECO 92,WMO/TD No.462, 251-256, Vienna.

Auer, I., 1993: Niederschlagsschwankungen in Österreich seit Beginn der instrumentellen Beobachtungen durch die Zentralanstalt für Meteorologie und Geodynamik. Österr. Beitr. zu Meteorologie und Geophysik, Heft 7, 73 S , Wien.

Auer, I., R. Böhm, N. Hammer, W. Schöner, T. Wiesinger, W. Winiwarter, 1995: Glaziologische Untersuchungen im Sonnblickgebiet: Forschungsprogramm Wurtenkees. Österr. Beitr. zu Meteorologie und Geophysik, Heft 12. Zentralanstalt für Meteorologie und Geodynamik, Wien.

Auer, I. und R. Böhm, 1998: Schneepegel und Totalisatoren im Sonnblickgebiet. Jahresbericht des Sonnblickvereines für die Jahre 1996 und 1997, S 42 - 87, Eigenverlag des Sonnblick-Vereines, Wien.

Auer, I., R. Potzmann, W. Schöner, 2000: Welchen Beitrag leisten Totalisatoren für die Klimaforschung im Hochgebirge? - gezeigt mit Hilfe des Totalisatorenmessnetzes im Sonnblickgebiet. Jahresbericht des Sonnblickvereins für die Jahre 1998 und 1999, S 22 - 30, Eigenverlag des Sonnblick-Vereines, Wien.

Schöner, W., 1995: Schadstoffdeposition in einer hochalpinen winterlichen Schneedecke am Beispiel von Wurtenkees und Goldbergkees (Hohe Tauern). Dissertation Universität Salzburg, Salzburg.

Schöner, W., I. Auer, und R. Böhm, 2000: Klimaänderung und Gletscherverhalten in den Hohen Tauern. Salzburger Geographische Arbeiten, Bd. 36, Salzburg.

Skoda, G., 1993: Pilotstudie zu I. Korrekturmöglichkeiten von Fehlern bei der Niederschlagsmessung und II. Möglichkeiten der Bestimmung der Höhenabhängigkeit des Niederschlages, Anhang, Teil E: Erfassung und Auswertung des Niederschlages. Hydrographisches Zentralbüro im BmfLuF-, Wien.

Zentralanstalt für Meteorologie und Geodynamik, 1999: Bericht über den Sonnblick-Workshop Umweltforschung im Hochgebirge - Ergebnisse von GAW-DACH und verwandten Projekten, 5. bis 6. Oktober 1999, Wien. Österr. Beitr. zu Meteorologie und Geophysik Heft 21. Zentralanstalt für Meteorologie und Geodynamik, Wien.

COST Action 0601 
Városklíma 2011 
SEECOF-2 
Climate variability and climate change 
RCM Workshop 2008 
HIRLAM / AAA Workshop 2007 
The preparation of climate atlas 
17th EGOWS Meeting 
ALADIN / HIRLAM 2005 
ALATNET 2003 
ALADIN / RC LACE 2003 
ALADIN 2002 
6th Seminar for homogenization 
5th Seminar for homogenization 
METEOROLÓGIAI VILÁGNAP 2006
Természeti katasztrófák megelőzése, hatásainak csökkentése

2005 Időjárás, éghajlat, víz és
fenntartható fejlődés
2004 Időjárás, klíma és víz az
információs társadalom korában