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I 

Editorial 
 

Special Issue: 11th Seminar for Homogenization and Quality Control 
in Climatological Databases and 6th Interpolation 
Conference jointly organized with the 14th EUMETNET 
Data Management Workshop 

 
The 11th Seminar for Homogenization and Quality Control in Climatological 
Databases and 6th Interpolation Conference were jointly organized with the 14th 
EUMETNET Data Management Workshop on 9–11 May, 2023 at the headquarters 
of the Hungarian Meteorological Service, Budapest, Hungary. The following topics 
were announced and some of them discussed in more depth in this Special Issue, 
that are crucial for effective climate data management and analysis. 

• Data Management and Rescue: Includes cataloguing, digitization, and 
archiving processes necessary for salvaging and organizing historical 
climate records. 

• Climate Observations and Standards: Encompasses standards, best 
practices, and metadata frameworks like the WMO Information System 
(WIS), INSPIRE, and climate network rating to maintain data integrity. 

• Quality Control: Covers automatic/manual techniques for assessing 
reliability to ensure data accuracy. 

• Homogenization Techniques: Focuses on methods for homogenizing 
climate time-series data from monthly to sub-daily scales, addressing 
exploration of inhomogeneities and applying benchmarking methods. 

• Temporal Scales and Interpolation: Explores temporal scales from synoptic 
situations to climatological mean values and interpolation formulas tailored 
to spatial probability distributions of climate variables. 

• Statistical Estimation and Modeling: Discusses estimation and modeling of 
statistical parameters (e.g., spatial trend, covariance) for interpolation 
formulas using spatiotemporal samples and auxiliary model variables. 

• Auxiliary Data Integration: Considers the use of auxiliary co-variables and 
background information (e.g., dynamical model results, satellite, radar 
data) for spatial interpolation, including data assimilation and reanalysis 
techniques. 

• Applications of Interpolation Methods: Examines various interpolation 
methods for meteorological and climatological fields, highlighting 
experiences with different variables. 



 

II 

• Gridded Databases and Monitoring Products: Showcases gridded 
databases, climate monitoring products, digital climate atlases, and climate 
normals for diverse applications in climate research and monitoring. 

This Special Issue of Id járás is already the second issue of this journal dedicated 
to this topic, and we hope in the continuation. 

 
 

Mónika Lakatos 
Guest Editor 



DOI:10.28974/idojaras.2024.2.1  

143 

ID JÁRÁS 
Quarterly Journal of the HungaroMet Hungarian Meteorological Service 

Vol. 128, No. 2, April – June, 2024, pp. 143–154 

Statistical modeling of the present climate by the 
interpolation method MISH – theoretical considerations 

 

Tamás Szentimrey 
 

Varimax Limited Partnership, Budapest, Hungary 
 
 
 

Author E-mail: szentimrey.t@gmail.com 
 
 
 

(Manuscript received in final form October 31, 2023)  
 
 
 
 

Abstract— Our method MISH (Meteorological Interpolation based on Surface 
Homogenized Data Basis; Szentimrey and Bihari) was developed for spatial interpolation 
of meteorological elements. According to mathematical theorems, the optimal interpolation 
parameters are known functions of certain climate statistical parameters, which fact means 
we could interpolate optimally if we knew the climate. Furthermore, the data assimilation 
methods also need to know the climate if Bayesian estimation theory is to be correctly 
applied. Therefore, we have developed the MISH system also to model the climate 
statistical parameters, i.e. present climate, by using long data series. It is a nonsense that 
we try to model the future climate but we do not know the present climate.  

 
Key-words: climate modeling, climate statistical parameters, data series, spatial 
interpolation, data assimilation, MISH, MASH 
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1. Introduction 

In the statistical climatology, the climate can be formulated as the probability 
distribution of the meteorological events or variables. The purpose of the 
statistical climatology is to estimate or model the climate probability distribution 
or equivalently the climate statistical parameters. Furthermore, the meteorological 
data series make possible to estimate or model the climate statistical parameters 
in accordance with the establishments of statistical climatology principles. 

Our method MISH (Meteorological Interpolation based on Surface 
Homogenized Data Basis; Szentimrey and Bihari, 2007, 2014; Szentimrey, 2017, 
2021, 2023c) was developed for spatial interpolation of meteorological elements. 
According to the mathematical theorems, the optimal interpolation parameters are 
known functions of certain climate statistical parameters, which fact means we 
could interpolate optimally if we knew the climate. Consequently, according to 
the principles of climatology, the modeling part of software MISH is based on 
long meteorological data series. The main difference between MISH and the 
geostatistical interpolation methods built in GIS (Geographic Information 
System) is that the sample for modeling at GIS methods is only the predictors, 
which is a single realization in time, while at the MISH method we use 
spatiotemporal data for modeling, which form a sample in time and space alike.  

We focus on the methodology of the modeling subsystem built in MISH. 
This subsystem was developed to model the following climate statistical 
parameters for half minutes grid: monthly, daily expected values, standard 
deviations, and the spatial and temporal correlations. Consequently, the modeling 
subsystem of MISH is completed for all the first two spatiotemporal moments. If 
the joint spatiotemporal probability distribution of a given meteorological element 
is normal (e.g., daily and monthly mean temperatures) then the spatiotemporal 
moments above uniquely determine this distribution, which is the mathematical 
model of the present climate for this meteorological element. 

In our conception, the meteorological questions and topics cannot be treated 
separately. Therefore, we present a block diagram (Fig. 1) to illustrate the possible 
connection between various important meteorological topics. The software MISH 
(Szentimrey and Bihari, 2014) and MASH (Multiple Analysis of Series for 
Homogenization; Szentimrey, 2023a,b) were developed by us. These software 
were applied also in the CARPATCLIM project (Szentimrey et al., 2012a,b; 
Lakatos et al., 2013). The paper of Izsák et al. (2022) presents another application 
to create a representative database for Hungary. 

 



 

145 

 
 
 
 
 

Fig. 1. Block diagram for the possible connection between various basic meteorological topics 
and systems. 

 
 

2. Theoretical additive model of spatial interpolation  

According to the interpolation problem for monthly or daily data, the unknown 
predictand ,  is estimated by use of the known predictors ,  
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= 1, . . . , where s is the location vector  spatialdomain  and  is the 
index of year. The type of the adequate interpolation formula depends on the 
probability distribution of the meteorological variable. Assuming normal 
distribution (e.g., temperature), the additive (linear) formula is adequate 
(Szentimrey and Bihari, 2007; Szentimrey et al., 2011).  

2.1. Climate statistical parameters 

The expected values are E , = + = 0, . . ,  , 
where  is the temporal trend or the climate change signal and  is the 
spatial trend. The standard deviations ( ) = D ( , )  ( = 0, . . . , ) and the 
correlation system is as,  is the predictand-predictors correlation vector,  is the   
predictors-predictors correlation matrix.  

2.2. Additive (linear) interpolation formula 

Assuming the normal distribution of the variables and the above model of 
expected values, the appropriate additive meteorological interpolation formula is  ( , ) = + ( , )   ,  
where = 1  because of unknown ( ). The quality of interpolation can 
be characterized by the root mean square error ( ) and by the 
representativity value: ( ) = 1 ( )( )  . 
 
Remark: Multiplicative model of spatial interpolation  
 
In this paper only the linear or additive model is described in detail, which is 
appropriate in case of normal probability distribution. However, perhaps it is 
worthwhile to remark that for case of a quasi lognormal distribution (e.g., 
precipitation sum), we deduced a mixed multiplicative additive formula which is 
used also in our MISH system, and it can be written in the following form: ( , ) = ( , )( , ) ( , ) + ( , ) ( , ) ,            
where the interpolation parameters are 0 ( = 1, . . . , ), = 1, and = ( ), = ( )( ), where ( ) ( = 0, . . . , ) are the spatial median values.  

2.3. The optimal interpolation 

The optimal interpolation parameters , ( = 1, . . . , ) minimize the root 
mean square error ( ), and these are known functions of the climate 
statistical parameters! The optimal interpolation is when we use the optimal 
parameters. 
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The optimal constant term is   = ( ) ( ) .      
The vector of optimal weighting factors = , . . , and the optimal 
representativity ( ) can be written as function of the parameters: ( ) ( ) ( = 1, . . . , ), , . The expected values and these parameters 
are climate statistical parameters, consequently we could interpolate optimally if 
we knew the climate well. For example, let us see the next theorem. 
 
Theorem 1 
 
If ( )/ ( ) = 1     ( = 1, . . . , )  then:  

(i) The vector of optimal weighting factors: = + .   
(ii) The optimal representativity is 

 ( ) = 1 (1 ) + (1 )  .  

Consequently the unknown climate statistical parameters are ( ) ( ) ( = 1, . . . , ) (do not depend on temporal trend of climate change) and the 
correlations  , . 

3. Modeling of climate statistical parameters in MISH 

The main difference between geostatistics and meteorology can be found in the 
amount of information being usable for modeling the statistical parameters. In 
geostatistics, the usable information or the sample for modeling is only the actual 
predictors ( , ) ( = 1, . . . , ) which belong to a fixed instant of time, that is 
a single realization in time (Cressie, 1991), while in meteorology we have 
spatiotemporal data, namely long data series which form a sample in time and 
space as well and make possible to model the climate statistical parameters in 
question. If the meteorological station location ( = 1, . . , ) have long data 
series ( , )( = 1, . . , ) then the climate statistical parameters can be 
estimated statistically for the stations (Szentimrey et al, 2011).  

3.1. Modeling of monthly climate statistical parameters for a half minutes grid 

3.1.1.  First step of modeling by using model variables 

The monthly climate statistical parameters belonging to the stations  ( = 1, . . , ) can be used for modeling the correlation structure as well as the 
spatial variability of local statistical parameters (Szentimrey and Bihari, 2014). 
The basic principle of this neighborhood modelling is as follows. 
Let ( ), ( ), ( , )( , , ) be certain model functions depending on 
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different model variables with the following properties, within a neighborhood <                ( , = 1, . . , ): 

(a) Modeling of correlations is , corr ( , ), ( , )  ; 

(b) Modeling of difference of means (E) is ; 

(c) Modeling of ratio of standard deviations (D) is      . 

The model variables may be distance, height, topography. 
 

3.1.2. Second step of modeling by interpolation  

Predictand location is , predictor station locations are ( = 1, . . . , ). The 
weighting factors can be calculated according to Theorem 1, where ,  contain 
the modeled predictand-predictors, predictors-predictors correlations based on 
Section 3.1.1 (a). 
Modeling of means, expected values (E) by additive interpolation is ( ) = ( ) ( ) + ( ) 

Modeling of standard deviations (D) by multiplicative interpolation is ( ) = ( )( ) ( ) . 

 
 

3.2. Relation of daily and monthly data interpolation 

Theorem 2 
 
Let us assume the following properties for the daily values within a month: 

(i) Expected values and standard deviations are ( ) ( ) = ,   ( )( ) =  ( = 1, . . . , ; = 1, . . ,30)  
(ii) Correlations  

 corr , , , =   ( , = 1, … , ; , = 1, . . ,30),  

where  is the correlation structure in space and  is the correlation 
structure in time. 
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Then the optimum interpolation parameters for the daily values and the monthly 
mean are identical: , = ,  ( = 0, . . . , ; = 1, . . ,30). 
Moreover, the representativity values for the daily values and the monthly mean 
are also identical: ( ) = ( ) ( = 1, . . ,30) in the case of 
optimal interpolation parameters. 
Consequently, the monthly modeled climate statistical parameters and the 
modelling methodology can also be applied to model the daily climate statistical 
parameters. 
Special modeling parts for daily data are modeling of temporal daily 
autocorrelations ( ) and daily standard deviations ( ) per months. We 
assume that the daily data of a given month constitute an AR(1) process with 
common standard deviation ( )  and temporal first-order autocorrelation ( ). Modeling of autocorrelation ( ) by additive interpolation is ( ) = ( ) ,

 where autocorrelations ( ) belonging to the stations and the weighting factors 
are calculated according to Section 3.1.2. The daily standard deviation ( ) can be estimated by using the monthly standard deviation ( ) 
and the first-order autocorrelation ( ).  
The RMSE can be calculated as follows: ( 0) = ( 0) (1 ( 0)). 
 

3.3. Modeled monthly and daily spatiotemporal climate statistical parameters in 
MISH 

The necessary unknown climate statistical parameters can be modeled for a half 
minutes grid. These modeled monthly and daily spatiotemporal statistical 
parameters in MISH system are: 
(i) spatial expected values (spatial trend) ( ), 

(ii) spatial standard deviations ( ), 
(iii) spatial correlations ( , ), and 

(iv) temporal first-order autocorrelations ( ). 
Consequently, the first two spatiotemporal moments can be modeled for daily and 
monthly data by the MISH procedure! The normal distribution is uniquely 
determined by these moments. Some examples for the modeled climate statistical 
parameters are presented in Fig. 2.  
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Fig. 2. Example for modeling of present climate by MISH. 
 
 
 

4. The main features of software MISHv2.01 

The new software version of MISH method (Szentimrey and Bihari, 2007, 2014; 
Szentimrey, 2017, 2021, 2023c) is under development, and it is consisting of two 
units that are the modeling and the interpolation systems. The interpolation system 
can be operated on the results of the modeling system. We summarize briefly the 
most important facts about these two units of the software. 

Modeling subsystem for climate statistical (local and stochastic) 
parameters: 

– Modeling of all the first two spatiotemporal moments for daily and monthly 
data (expected values, standard deviations, spatiotemporal correlations).  

– Based on long homogenized data series and supplementary deterministic 
model variables. The model variables may be such as height, topography, 
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distance from the sea, etc. Neighborhood modeling, correlation model for 
each grid point, dense half minutes grid. 

– Benchmark study, cross-validation test for interpolation error or 
representativity.  

– Modeling procedure must be executed only once before the interpolation 
applications. 

Totally different principle from the other methods! 
Interpolation subsystem:  

– Additive (e.g., temperature) or multiplicative (e.g., precipitation) model and 
interpolation formula can be used depending on the climate elements. 

– Daily, monthly values and many years’ means can be interpolated. 
– Few predictors are also sufficient for the interpolation and no problem if the 

greater part of daily precipitation predictors is equal to 0. 
–  The expected interpolation error RMSE is modelled too, representativity 

examination of arbitrary station network is performed.   
–  Real time quality control for daily and monthly data (additive model). 
– Capability for application of supplementary background information 

(stochastic variables), e.g., satellite, radar, forecast data. (with QC: data 
assimilation) 

– Data series completion that is missing value interpolation, completion for 
monthly or daily station data series.  

– Capability for interpolation, gridding of monthly or daily station data series, 
as grid-point and grid-box average datasets alike. 

 
The elder versions of MISH-MASH software can be downloaded from: 
http://www.met.hu/en/omsz/rendezvenyek/homogenization_and_interpolation/software/ 
We plan to share the new version MISHv2.01 next year (2025). 

5. The relationship between MISH and data assimilation 

The MISH system is capable of interpolation with background information and 
quality control (see Fig. 1), which is essentially a data assimilation procedure 
(Szentimrey, 2016).  

5.1. Interpolation with background information in MISH 

The background information, e.g., forecast, satellite, radar data can be efficiently 
used to decrease the interpolation error. In this paper only the interpolation based 
on additive model or normal distribution is presented. According to Section 2, let 
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us assume that, ( , ) is the predictand, ( , ) = + ( , ) is the 
interpolated predictand, moreover, there is given the = ( , ) |  
background information on a dense grid. 
Then the principle of interpolation with background information is that the 
interpolated predictand given G  can be expressed as follows: ( , ) = ( , ) + ( , ) ( , ) | ,  (1) 

where E ( , ) ( , ) |  is the conditional expectation of  ( , ) ( , ), given G . 

5.2. Data assimilation and reanalysis data 

The forecast and the reanalysis data are based on the data assimilation which 
procedure is in strong relationship with the methodology of interpolation with 
background information. The Bayes estimation theory is the mathematical 
background of the data assimilation methods in meteorology. The purpose of data 
assimilation is to determine a best possible atmospheric state using observations 
and short range forecasts. The typical way applied in practice to estimate the true 
atmospheric state is the minimization of the following variational cost function: 
 ( ) = ( ) ( ) + ( ) ( ) , (2) 
 
where  is the analysis field, predictand (grid),  is the given background field 
(forecast),  is the given observations, predictors; = E( | ),  is the 
background error covariance matrix, and   is the observation error covariance 
matrix. 
It can be proved that this procedure is essentially an interpolation with background 
information including a quality control part for the predictors. The cost function 
(Eq. (2)) is known and referred by the forecasting community, as it is based on 
the Bayesian estimation theory. However, there are some mathematical omissions 
and simplifications at this cost function (Szentimrey, 2016).  
This mathematical derivation of the Bayesian cost function is not correct, 
therefore, the decision according to Eq. (2) is not a real Bayes decision. For 
example this formula includes implicitly the assumption that the conditional 
expectation of , given  is identical with , i.e., E( | ) = , that means the 
conditional expectation does not depend on climate, and the forecast is always 
optimal. Or the relation of the background error covariance matrix Q  and the 
climate is absolutely not known by the forecasting community. Consequently, the 
necessary climate statistical parameters are also neglected at the data assimilation 
procedures applied in practice.  
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The data assimilation technique is used also to produce reanalysis data series in 
order to monitor the climate change based on past observation series. However, 
beside the inadequacies mentioned above there are further sources of errors for 
reanalysis data. One of them is the inhomogeneity of the used station data series 
i.e., these series are often affected by artificial shifts due to changes in the 
measurement conditions (relocations, instrumentation). Another problem may be 
the little spatial representativity, i.e., relatively few station data series are used for 
production of reanalysis data series as a consequence of the data policy between 
the countries (Lakatos et al., 2021; Bandhauer et al., 2022). 

6. Conclusion 

It is a nonsense that we try to model the future climate but we do not know the 
present climate. We should know the present climate well, if want an efficient 
methodology for spatial interpolation and data assimilation. For this purpose, 
special advanced mathematics is needed of course. Originally, we have developed 
the MISH system also to model the climate statistical parameters, i.e., climate, by 
using long station data series, since the optimal spatial interpolation needs 
modeled climate statistical parameters. But the question can be turned back. The 
climate modeling can be based on spatial interpolation of station climate statistical 
parameters. 
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Abstract— Calculation of the new climatological standard normals for the period 1991–
2020 was a motivation to carry out the homogenization of the required climatic variables 
in the Spanish Meteorological Agency (AEMET). 

The national observation network has undergone changes along its history that often 
introduce non-climatic interferences to the series. On the other hand, for the calculation of 
various parameters and climatic indices, it is essential to have complete daily series. With 
this in mind, homogenization of daily series of precipitation, maximum and minimum 
temperatures, sunshine hours, relative humidity, station level pressure, mean wind speed, 
and maximum wind gust was carried out. 

This paper shows how the homogenization process was performed, covering the 
period 1975–2020 with carefully selected daily data sets from the national climatological 
database. The homogenization software Climatol v.4.0 was used for this process, and 
derived variables such as average temperature, sea level pressure, and vapor pressure were 
calculated from their related homogenized series. 

The peculiarities and issues of each variable are explored and, finally, the 
homogenization results were used to readily calculate the 1991–2020 climatological 
standard normals with the dedicated software CLINO_tool v.1.5. 

 
Key-words: standard normals, homogenization, Climatol, CLINO_tool, climatic variables, 
daily data 
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1. Introduction 

Calculation of the new climatological standard normals for the period 1991–2020 
(WMO, 2017) was a motivation to carry out the homogenization of all the daily 
series of the required climatic variables in the Spanish State Meteorological 
Agency (AEMET).  

Having high-quality series which allow objective monitoring of the climatic 
behavior in a region is fundamental. Climatological series are subjected to 
changes of different nature. Some examples could be: instrumentation, location, 
changes in environment conditions near the station, different measurement 
methods, etc.  

All these changes produce alterations in the data series which have no 
climatological or meteorological origin. Thus, in order to study possible changes 
in the climate or watch its behavior, time series long enough and without non-
climatological alterations are necessary. These are homogenized series (WMO, 
2020).  

The land observation network of AEMET is made up of stations with 
specialist observers, volunteer observers, and automatic stations. The stations 
with professional workers are well distributed throughout the country, and usually 
do observations of many different variables. The stations with volunteers, 
complements the network throughout the entire territory. This selfless 
collaboration is very valuable. It provides measurements from areas that would 
otherwise lack information. Mostly, these stations measure precipitation and 
many also get temperature data. In recent times, the number of these collaborating 
stations has been reduced, but the number of automatic stations has increased. The 
automatic stations provide data for other variables in addition to temperature and 
precipitation.  

All the data collected through these different methods is stored in the national 
climatological database.   

This study focuses on the calculation of homogenized series of different 
climate variables. 

To make this possible, the series were homogenized using a pre-release of 
the R package Climatol version 4 (Guijarro, 2023b).  Given the computational 
requirements, the daily processing was computed in AEMET’s HPC Cirrus.  

Throughout the entire study period, the available data has different nature of 
origin but complements each other to perform the homogenization. Climatol 
responds well to short series, such as those obtained from recent automatic 
stations. Furthermore, series that no longer exist but that existed throughout the 
period can help to homogenize series that currently exist. All this variety of data 
series is very valuable for understanding the behavior of the variables in an area 
throughout the entire period considered. 

When it was necessary to obtain the normals for the last reference period 
1981–2010, the homogenized series of precipitation and temperature in that 
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period were calculated (Botey et al.,2013; Chazarra et al., 2018). On that 
occasion, monthly data series were homogenized using an earlier version of 
homogenization software Climatol (Guijarro, 2014). These previous works were 
taken as a base and reference, being expanded with the calculation of 
homogenization of daily series and were included more variables such as: 
sunshine duration, relative humidity, station level pressure, mean wind speed, and 
maximum wind gust.  

Working with daily series offers several advantages. For example, 
straightforward calculation of daily parameters and climatic indices, such as 
number of days over certain thresholds. However, it also brings certain 
disadvantages such as their high variability and the huge calculation capacity that 
is required. 

When homogenized series were obtained, the derived variables, such as 
average temperature, sea level pressure, and vapor pressure were calculated from 
their related homogenized series. 

Finally, once all the relevant series have been obtained, the 1991–2020 
climatological standard normals were calculated automatically and written in the 
required format to be sent to WMO by means of the CLINO_tool (v.1.5) 
(Guijarro, 2023b). 

2. Procedure 

2.1.  Data, regions and period selection 

This study is carried out covering the period 1975-2020. Although the purpose 
was to obtain the 1991–2020 standard climatological normals, the period 1975–
2020 was chosen to allow the recalculation of the 1981–2010 normals, adding 6 
years backwards to improve the detection of inhomogeneities in the early 80s. 

A large amount of daily data for the period 1975–2020 are available in the 
AEMET Climatological Database, especially when it comes to precipitation and 
temperature. For the other variables, considerably less daily data are stored. 

This is because the collaborator stations mainly measure precipitation and to 
a lesser extent temperature, as it was mentioned above. Their data is of a daily 
nature. The remaining variables are measured at the main stations of the official 
AEMET network. Their number has increased in recent times due to the 
introduction of automatic stations that provide ten-minute data. This type of data 
has been stored in the climatological database since last years of the 2000s. In the 
main network stations, the nature of the data can be hourly, for example if it is 
manual, or ten-minute if it is automatic. Therefore, there are three types of data 
according to their measurement: daily, hourly, and ten-minute. All of them are 
computed to obtain the corresponding daily data and stored in the climatological 
database. 
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In a first step, only data series with a minimum of 5 years of daily data are 
accepted. Except in the case of precipitation, where only series with a minimum 
of 10 years are taken into consideration, due to their high number and the 
irregularity of their data. 

When two or more variables have a functional dependency, those observed 
have been selected (extreme temperatures, relative humidity, station level 
pressure), leaving the others (mean temperature, water vapor partial pressure, sea 
level pressure) for a posterior calculation. 

For precipitation and temperature, the study area is divided into 12 regions: 
mainland Spain (divided in turn into ten regions with similar climatic conditions 
and coinciding with the main hydrographic basins), the Balearic Islands, and the 
Canary Islands, due to their spatial and climatic differentiation. 

For the rest of variables except precipitation and temperature, the study area 
is divided into three regions: mainland Spain (including autonomous cities of 
Ceuta and Melilla), the Balearic Islands, and the Canary Islands, due to their 
spatial and climatic differentiation. Mainland is divided into fewer regions mainly 
due to lack of data that makes its performing difficult.  

2.2. General steps using Climatol 

To perform the homogenization of the daily series of all the variables, a pre-
release of the R package Climatol v4.0 was used. This software is very flexible, 
it allows to homogenize different climatic variables and in different time scales 
(Guijarro, 2023b). 

Daily data have a high variability over time that makes it difficult to detect 
changes in their mean. The basic process with Climatol consists of obtaining 
monthly series from the daily data and homogenizing them. The daily series are 
divided with the breakpoints obtained in this monthly homogenization. Finally, 
all the series can be reconstructed from their homogeneous sub-periods in a final 
stage by estimating all their missing data.  

The schematic general steps used in this work with Climatol are: 
1. Preparation of the series in the required input format. To do this, the function 

csv2climatol from the Climatol package is used, set to each variable. 
2. Only for precipitation: replace trace values by zeros and dissaggregate values 

accumulated during a few days. The distribution of accumulated is calculated 
with the homogen function using the cumc = -4 parameter. 

3. First exploratory analysis of the daily series to control their quality (homogen 
function). 

4. Obtain the monthly series from the daily data. The daily data is grouped into 
monthly series with the idea of obtaining the breakpoints. The dd2m function 
is used. 
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5. Homogenization of the monthly aggregates. The monthly homogenization is 
carried out to obtain the breakpoints, using the homogen function, with the 
appropriate parameters in each case (Table 1). 

6. Careful manual review of these results by service specialists, identifying bad 
quality issues, deleting anomalous periods or whole series where needed, and 
repeating step 5. 

7. Daily homogenization. Taking advantage of the breakpoints offered by the 
previous steps, it proceeds to the homogenization of the daily data. The 
parameter metad = TRUE is used in the homogen function. 

8. Calculation of the daily series of variables considered derived from the 
corresponding homogenized ones. 
Finally, with the homogenized series, the CLINO files required with the 

climatological normals for the standard period 1991–2020 can be straightforward 
obtained. CLINO_tool v.1.5 software is used.  

In the homogenizations carried out, the following parameters (Table 1) have 
been used in the homogen function, following the recommendations of the 
documentation (Guijarro, 2023a): 

• dz.max sets the thresholds for rejecting anomalous data or warning about 
suspicious data, 

• inht is the inhomogeneity threshold, that is, the value of the homogeneity test 
above which the series will be split, 

• std is the type of normalization applied to the data (e.g., default: std=3 means 
subtract the mean and divide by the standard deviation; with std=2 the data 
will be divided by its mean value; std=1 only centers the data by subtracting 
its mean value), 

• nref is the maximum number of nearby data to use to estimate those of the 
problem series, 

• vmin and vmax serve to limit the possible values that the data can take, and 

• gp is the graphics parameter e.g., gp = 4 indicates moving annual sums 
instead of average values in final graphics. 
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Table 1. Parameters used in homogen function  
 

 
monthly  daily both 

dz.max inht dz.max nref std vmin vmax gp 

Precipitation 15 20 25 1 2 - - 4 
Temperature 6 - 15 - - - - - 
Sunshine hours 6 - 12 - 1 0 - - 
Relative humidity 6 - 15 - - 0 100 - 
Station level pressure 6 - 15 - - 0 - - 
Mean wind speed and 
max. wind gust 6 - 15 - 2 - - - 

 
 
 

The peculiarities of the process for each variable are described below.  

2.3. Precipitation 

Firstly, the input data is selected. From the information stored in the 
climatological database, those stations with precipitation series of at least 10 years 
of daily data are selected resulting in a total of 6293 initial stations distributed 
throughout the entire territory (Fig. 1). Due to the huge amount of data, to 
facilitate its computation, the territory is divided into the 12 regions mentioned 
above.  
 

 
 
 
 

 
Fig. 1. Number of daily data series for precipitation (left) and distribution of precipitation 
stations (right). 



161 

In this variable, when the precipitation is negligible (<0.1 mm), the data is 
stored in the database with a value of -3. This values are changed to 0, to avoid 
small errors in aggregate data. 

When the measurement of the amount of precipitation of the day cannot be 
carried out, it is marked as "accumulated". On the day when the observation can 
already be made, the total precipitation accumulated in the previous days is 
recorded. This situation occurs mostly in manual measurements, mainly in 
collaborator stations. But this can also happen with automatic stations, for 
example, when snow freezes in rain gauge without a heater. Before proceeding 
with homogenization, these accumulations must be distributed over the days 
without measurements. Climatol version 4.0 allows this process to be done using 
the cumc = -4 parameter in the homogen function. 

The data is then grouped into monthly values, using the dd2m function from 
the Climatol package. It must be taken into account that in this case the monthly 
values are totals and not average values, so to indicate this, the value of the valm 
parameter must be changed to 1. 

With the parameters indicated (Table 1), the monthly homogenization is 
made.  

Subsequently, the results are carefully manually reviewed by specialist 
personnel. Among other criteria used, this review is also based on metadata when 
possible. As a result of this review, 30 series are rejected throughout the entire 
territory. To avoid the influences of these rejected stations on nearby stations, the 
entire process is redone. 

 
 
 
 

 
Fig. 2. Examples of series rejected after monthly homogenization. 



162 

An example of this is shown in Fig. 2. The running annual totals of the 
reconstructed monthly precipitation series of two rejected stations are shown. In 
this case, upper graphs show the running annual totals of the reconstructed 
monthly precipitation series (parameter gp=4, Table 1). The original series are 
drawn darker. The other lines represent the reconstructed series from the different 
homogeneous fragments. Lower graphs show the correction factors applied to the 
original data in the reconstruction of the series. 

In both figures it can be seen that there are few data, especially in the one on 
the right. Both series are rejected due to their lack of quality data, and none of the 
reconstructed series offers conclusive or representative information. 

The breakpoints obtained in the monthly homogenization are used to 
calculate the daily homogenization.  

2.4.  Maximum and minimum temperature 

Regarding temperature, the homogenized variables are the maximum and 
minimum daily temperature. The daily series of average temperature from the 
homogenized series of maximum and minimum temperatures are obtained in a 
derivative way. In this case, from the series stored in the climatological database, 
those with a minimum of five years of data are selected resulting in a total of 3704 
selected stations for the entire territory, which is divided into 12 regions (Fig. 3).  

 
 

 

 
Fig. 3. Number of daily data series for temperature and distribution of temperature stations. 
 
 
 
 
The entire process described above is carried out, but in this case the 

distribution of accumulated values is no longer necessary, and the grouping into 
monthly values is done by calculating daily averages.  
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After homogenizing the grouped monthly data, results are manually 
reviewed, and 34 series are rejected. The whole process is recalculated to obtain 
the homogenized daily series.  

2.5. Sunshine duration 

In this case, a total of 238 series are selected throughout the territory, which is 
divided into 3 different climatic regions (Fig. 4) corresponding to mainland Spain, 
the Balearic Islands, and the Canary Islands. The increase in the number of 
stations observed at the beginning of the 2010s is due to the installation of 
automatic measurement equipment. 

After the monthly homogenization, a total of 12 series are rejected after 
manual review, and all process is redone. After the daily homogenization, the total 
hours of sunshine can exceed the theoretical number of hours that a certain place 
should have. So to fix this if necessary, an auxiliary function fix.sunshine is used.  

 
 
 

 
Fig. 4. Number of daily data series and distribution of stations for sunshine hours. 

 
 
 
 

2.6. Relative humidity 

Vapor pressure is the main variable required for the calculation of the climatic 
normal. However, it is a variable calculated from other observed variables. 
Considering the consistency with the observation, it was decided to homogenize 
the relative humidity. Vapor pressure is obtained then from the resulting data 
series and the corresponding average temperature series. 

As at least 5 years of daily data are required, we have a total of 914 data 
series available for calculation. Processing is divided into three climatic regions 
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(Fig. 5) corresponding to mainland Spain, the Balearic Islands, and the Canary 
Islands.  

In this variable, there is also a considerable increase in the number of 
available stations around 2010. This is attributed to the installation of a large 
number of automatic stations during that period. Nevertheless, the daily mean 
value of this variable is calculated using data from 07, 13, and 18 UTC hours to 
maintain consistency with historical data. Before 1996, only information at these 
specified hours was recorded. 

After the monthly homogenization, about 15 stations are eliminated from the 
calculation.  

 
 
 
 

 
Fig. 5. Number of daily data series for relative humidity and distribution of its stations. 

 
 
 
 
 

2.7. Station level pressure 

In this case, the main variable required in the climatological normals is the 
pressure at sea level. However, it is a variable derived from the pressure at the 
station level, which is the one observed. For consistency with the 
observation/record method, it was decided to homogenize the observed variable 
and from the results, to obtain the homogenized daily series of pressure at sea 
level. 

Similar to what happens with relative humidity, the daily mean value of this 
variable is obtained from the values at 07, 13, and 18 UTC hours. 

After discarding those series with less than 5 years of data, a total of 274 
stations are available (Fig. 6), of which 13 are rejected after evaluating their 
quality. 
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Fig. 6. Number of daily data series for station level pressure and distribution of its stations. 
 
 
 

2.8. Mean wind speed and maximum wind gust 

The maximum wind gust is treated as a secondary variable to report normal 
climatological values. Taking advantage of this calculation, the average wind 
speed has also been homogenized. 

Similar to the previous variables, the daily mean value of this variable 
continues to be calculated from the data at 07, 13, and 18 UTC hours, even though 
the majority of measurement stations are automatic. 

In both variables, after rejecting those series with less than five years of daily 
data, near 900 series are gathered (Fig. 7), of which 11 are rejected after a quality 
review after the monthly homogenization. 

 
 
 

 

 

 
Fig. 7. Number of daily data series for wind and distribution of its stations. 
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2.9. Derivate values  

As previously mentioned, the series of derived variables are calculated from the 
homogenized daily series of the variables from which they are derived. 

The average temperature is calculated from the series of daily maximum and 
minimum temperature. The vapor pressure is obtained from the series of relative 
humidity and average temperature. Likewise, the pressure at sea level is derived 
from the pressure at the station level.  

2.10.  Normal values 

Once all the relevant series have been obtained, the CLINO files can be calculated 
straightforward using the software CLINO_tool v.1.5. This CLINO files are 
requested with a specific structure. With CLINO_tool, these files are 
automatically generated from the Climatol output after the daily homogenizations 
(Fig. 8). 
 

 

 
 
 

 
Fig. 8. Example of the CLINO file heading. 
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It must be taken into account that the CLINO_tool only calculates normals 
from series having the required minimum of 80% of data in the reference period 
1991–2020.  

3. Results 

The main results are the homogenized data series of the variables involved. Some 
particular cases about the relationship between changes involved in stations and 
breaks detected are discussed below. 
 

3.1.  Summary of breaks  

Table 2 shows a summary of number of series and breaks detected by 
variable. 
 

 

Table 2. Summary of the breaks by variable 

 

 
 

It highlights the low value of average breaks-points/series for precipitation. 
High number of series and irregularity of their data are observed. Fewer jumps in 
the average are detected. Moreover, the review of the test histograms and anomaly 
graphs suggested a lowering of the default value of parameter inht, which is 25, 
to 20 (Table 1). Variability is inherent to this variable. It is of interest to increase 
the value of the parameter dz.max, so that fewer anomalous data points are 
rejected. 

Climatological variable Number of 
series 

Number of  
break-points 

Average break-
points/series  

Precipitation 6293 1759 0.28 

Maximum temperature 3704 5630 1.52 

Minimum temperature 3704 5577 1.51 

Sunshine hours 238 126 0.52 

Relative humidity 914 601 0.66 

Station level air pressure 274 353 1.29 

Mean wind speed 900 586 0.65 

Maximum wind gust 883 495 0.56 
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The same does not happen with temperature. After observing the anomaly 
graphs, the threshold value inht = 25, is appropriate for monthly values of 
temperature. Although in a little conservative way, we are trying not to detect 
false jumps in the average at the cost of letting the minor ones pass. 

3.2. Change in location 

Fig. 9 shows a graph with the running annual means of hours of sunshine at the 
Tenerife Sur airport located in the Canary Islands. In this case, a break was 
detected for November 2014. According the stored metadata, it has been verified 
that in November 2014, the location station at the airport was changed, thus giving 
a possible explanation for this break. In this case, this break produces a split in 
two series, where the last period undergoes an additional correction of more than 
0.5 hours in the data prior to the break. 

We can find another example in Fig. 10, that shows a graph with the running 
annual totals of precipitation at Llinars del Vallès (mainland). Here the Climatol 
has detected a break in 1995. According to the registered metadata it is described, 
that in the middle of the decade there was a change of location from a garden to 
an interior terrace at 250 m apart.  
 
 

 

   

 

Fig 10. Running annual means for sunshine
in Tenerife Sur with a break in November
2014. 

Fig. 9. Running annual totals for
precipitation with a break in 1995. 
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3.3. Change in shelter  

Fig. 11 shows a graph with the running annual means of maximum temperature 
at Hervás (mainland) with a break detected in 2018. It is a THIES-type automatic 
station that started operating in 2008. According to the records, in 2018, a change 
of shelter was carried out with a change of height. 

3.4. Change in instrumentation 

Fig. 12 shows how a change of instrumentation could affect the measurements of 
wind. In this case, a break was detected in the late 2000s. It is a SEAC-type 
automatic station that at the end of the decade was replaced by a THIES-type 
station. On this occasion, the series prior to the break see their values clearly 
increased. 
 
 
 

    
 

 
 

3.5. Change in calculation/measurement methods 

The following example (Fig. 13) shows a graph with the running annual means 
for the station level pressure. In this case, a break was detected in 1996. According 
to metadata, after 1996, the barometric reference was changed to reduce the 
pressure calculation. There is no further recorded metadata that could explain the 
other break detected in 2008. 

Fig. 12. Running annual means for mean
wind speed. 

Fig. 11. Running annual means for maximum
temperature with a break in 2018. 
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Fig. 13. Running annual means for station pressure. 

4. Conclusions 

Due to the large amount of data and simultaneously running threads, the 
calculation involves a computationally heavy load. It became necessary to resort 
to processing in the homogenization process HPC, especially thinking about the 
calculation time. 

Climatol has responded well to detecting jumps whose origin appears to be 
related to non-climatological changes recorded in the metadata. 

Obtaining the normal values from the homogenized series using 
CLINO_tool has been straightforward.  

As a continuation, the maps corresponding to the climatological normals for 
the period 1991–2020 will be obtained. 

An interesting perspective for the future could be obtaining daily data grids 
and maps of variables such as precipitation and temperature from the 
homogenized data. They could be compared with non-homogenized grids but 
validated by automatic methods. 
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Abstract— In Hungary, the regular precipitation measurements began in the 1850s under 
the direction of the then Austrian Meteorological Institute based in Vienna, and from 1870 
onwards continued under the Budapest-based "Meteorológiai és Földdelejességi Magyar 
Királyi Központi Intézet", now HungaroMet Hungarian Meteorological Service. Over the 
decades, the measurements have undergone many changes, including changes in 
instrumentation and relocation of stations, which cause inhomogeneities in the data series. In 
addition, the number of stations and the density of the station network have also changed 
significantly. As a result, the data series need to be homogenized and interpolated to a uniform 
grid in order to study the climate and its changes over the long term. In this paper, we present 
the methods used, discuss the station systems used for precipitation homogenization and 
interpolation in different periods, analyze the main verification statistics of homogenization 
and also the results of interpolation, and examine the annual, seasonal, and monthly 
precipitation data series and their extremes for the period 1854–2022. 
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1. Introduction 

To better understand the climate system and its changes, we need to analyze long 
data series with high quality. Precipitation is a highly variable element in space 
and time, so long time series and many more stations are needed to describe the 
spatial characteristics of precipitation compared to, for example, temperature. 
Climate research and studies on precipitation conditions in Hungary, based on 
precipitation measurements, can typically be found from the beginning of the 20th 
century. There are few analyses dating back to the 19th century (Izsák et al., 
2022). Most of the precipitation data are digitized from the mid-20th century, 
from 1951 onwards. Precipitation measurements from the earlier period are 
mostly available on precipitation data sheets and in climatological books. It is, 
therefore, important to collect these data series, which have not yet been digitized, 
in order to have as accurate knowledge as possible of precipitation conditions and 
their changes. 

The data series contain inhomogeneities due to, for example, station 
relocations, instrument changes, or changes in the environment, and therefore, 
homogenization is necessary. Several methods and software have been developed 
in recent decades to homogenize meteorological elements (Venema et al., 2012, 
2020). These include, for example, the MASH (Szentimrey, 1999, 2017, 2023), 
the standard normal homogeneity test (SNHT) (Alexandersson, 1986; 
Alexandersson and Moberg, 1997), the HOMER (Mestre et al., 2013; Joelsson et 
al., 2021), and the ACMANT (Domonkos, 2015) methods. 

For homogenization of data series, quality control, and filling in the missing 
values, we use the MASH (Multiple Analysis of Series for Homogenization) 
procedure at the Climate Department of the Hungarian Meteorological Service 
(OMSZ) (Szentimrey, 1999, 2008a, 2017). By applying the MASHv3.03 software, 
homogenized and quality-controlled data series become available without missing 
data for further analysis. The MASH method is based on hypothesis testing. To 
homogenize the precipitation series, we used a multiplicative model with a 
significance level of 0.01. Inhomogeneities are estimated from the monthly data 
series. The monthly, seasonal, and annual inhomogeneities are harmonized in all 
MASH systems (considering different station networks). 

There are several interpolation methods that are used to produce gridded 
climate data series (Sluiter, 2009). For the spatial interpolation of precipitation, 
the MISH (Meteorological Interpolation based on Surface Homogenized Data 
Basis) method, specifically developed for the interpolation of meteorological 
elements, is used at the Hungarian Meteorological Service (Szentimrey and 
Bihari, 2007, 2014). 
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2. Applied methods 

For homogenization of data series, quality control and filling in the missing data, 
we use the MASH (Szentimrey, 1999, 2008b, 2017) procedure at the Climate 
Department of HungaroMet Hungarian Meteorological Service. By applying the 
MASHv3.03 software we have missing data filled, homogenized, and quality-
controlled data series. 
 

2.1. The main properties of MASH procedure 

The homogenization of monthly series includes: 
• a relative homogeneity test procedure, 
• a step-by-step iteration procedure, 
• additive (e.g., temperature) or multiplicative (e.g., precipitation) models that 

can be selected, 
• quality control and missing data completion, 
• homogenization of seasonal and annual series, 
• metadata (probable dates of breakpoints) that can be used automatically, 
• automatically generated verification files. 

The homogenization of daily series is: 
• based on the detected monthly inhomogeneities, 
• quality controlled and containing the completion of missing data for each 

day. 
If the data series are lognormally distributed (e.g., precipitation), then the 

multiplicative model can be used (Szentimrey, 2008a). In the case of relative 
methods, a general form of multiplicative model for additional monthly series 
belonging to the same month in a small climate region can be expressed as 
follows: 

 
 =      = 1,2, … , ;  = 1,2, … , , (1) 

 
where X* indicates the candidate series, C* is the climate change, IH* is the 
inhomogeneity, * is the noise, N is the number of stations, and n is the total 
number of time steps. 
Logarithmization for additive model gives the following equation: 
 
 = + +      = 1,2, … , ;  = 1,2, … , , (2) 

 
where = ln     ,   = ln , 
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= ln     ,   = ln . 
 

A problem occurs if  values are near or equal to 0. This problem can 
be solved by a transformation procedure that slightly increases the small values. 
Consequently, the multiplicative model can be transformed into the additive 
model (Szentimrey, 1999, 2017). Once homogenization is complete, the data 
series are retransformed. 

2.2. The main properties of MISH method 

By using the MISHv1.03 software (Szentimrey and Bihari, 2007, 2014), spatially 
representative data series are obtained. MISH consists of a modeling and an 
interpolation subsystem. 

The main features of the modeling subsystem for climate statistical (local 
and stochastic) are as follows: 
• it is based on long term homogenized data series and supplementary 

deterministic model variables (height, topography, distance from the sea etc.), 
• additive (e.g., temperature) or multiplicative (e.g., precipitation) models can 

be selected, 
• the modeling procedure should be executed only once before the 

interpolation applications, 
• it uses a high resolution grid (e.g., 0.5’×0.5’). 
The main characteristics of the interpolation subsystem are as follows: 
• use of the modeled parameters for the interpolation of the meteorological 

elements to any point or grid, 
• use of background information (e.g., satellite, radar, forecast data), 
• data series completion (missing value interpolation for daily or monthly 

station data) during the interpolation process, 
• capability for interpolation, gridding of monthly or daily station data series. 

In practice, many kinds of interpolation methods exist (e.g., inverse distance 
weighting (IDW), kriging, spline interpolation), therefore the question is the 
difference between them (Szentimrey et al., 2011). According to the interpolation 
problem, the unknown predictand ( , ) is estimated by use of the known 
predictors ( , ) ( = 1, … , ), where the location vectors  are the elements of 
the given space domain,  is the total number of predictors, and  is the time. The 
type of the adequate interpolation formula depends on the probability distribution 
of the meteorological element. 

In the case of precipitation, a multiplicative model can be applied for a quasi-
lognormal distribution: 
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( , ) = ( , ), , + , ( , )  ,   (3) 
 
where > 0, > 0, = 1, and 0 ( = 1, … , ), ,  ( = 1, … , ) 
are the interpolation parameters (Szentimrey and Bihari, 2014). 

The root mean squared interpolation error (RMSE) is defined as follows: 
 

 ( ) = ( , ) ( , )  , (4) 

 
and the representativity of the station network can be defined as follows: 
 
 ( ) = 1 ( )( ) , (5) 
 
where  is the expected value and ( ) is the standard deviation of the 
predictand. 

2.3. ANOVA (analysis of variance) 

To compare gridded data sets interpolated from different numbers of data series, 
ANOVA is performed to examine the estimated spatiotemporal variances 
(Szentimrey and Bihari, 2014; Izsák et al., 2022). 
 
Notations: 
 Z s , t  (j = 1, … , N; t = 1, … , n) – gridded data series   (s : location, t: time), E s = Z(s , t) (j=1,…,N) – temporal mean at location sj , D(s ) = (Z s , t E s )     (j=1,…,N) – temporal standard deviation 

at location sj , E(t) = Z(s , t)                            (t=1,…,n) –  spatial mean at moment t, D(t) = (Z s , t E(t))         (t=1,…,n)  –  spatial standard deviation at 

moment t, E = · Z(s , t) = E(s ) = E(t)   –  total mean, D = · (Z s , t E)                                     –  total variance. 
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Partitioning of Total Variance (Theorem): 
 D = 1N (E s E) + 1N D (s ) = 1n (E(t) E) + 1n D (t). 
 

The analysis of these terms is recommended to characterize the 
spatiotemporal variability. 
 
Spatial terms:  

spatial variance of temporal means:  (E s E) , 

and temporal mean of spatial variances:  D (t). 
Temporal terms:  

spatial mean of temporal variances: D (s )
 ,

 

and temporal variance of spatial means   (E(t) E) . 
 
We do not show the variances but the standard deviations instead, to make the 
values easier to interpret, especially in the case of precipitation: 

total standard deviation:  D = · Z s , t E , 
spatial standard deviation of temporal means:   (E s E) , 
root spatial mean of temporal variances:                                       D s , 
temporal standard deviation of spatial means:                      (E(t) E) , 
root temporal mean of spatial variances:                                        D (t). 

3. Data 

The meteorological measurements in Hungary are stored in the climate database of 
the HungaroMet. Today, meteorological measurements from automatic 
meteorological stations are continuously entered into the database. Records of older, 
pre-automation times are contained in climatological books and precipitation data 
sheets. The digitization of old data into the climate database is still ongoing. Most of 
the precipitation data from the 1950s are available in digital form also, whereas most 
of the precipitation data from earlier decades are still available only on paper. 
Recently, all monthly precipitation data from the beginning of the measurements in 
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Hungary have been collected, and these precipitation data can now be used also to 
create a homogenized and gridded climate database. 

Before including data that has not yet been digitized, the existing daily 
precipitation database was renewed, and a study was published about this (Szentes 
et al., 2023). That paper describes the changes in the station systems used and the 
main results of the homogenization. The renewal of the station networks was 
necessary because of the increasing lack of data, especially for the long series (due 
to the closure of stations), and therefore, the main objectives were (i) to minimize 
the missing data and (ii) to keep the old data series with long measurements by 
creating new merged station series. There is no significant change in the data set 
consisting of 131 stations used in the first half of the 20th century, the old and 
new systems are almost identical. However, in the last 10–20 years, several 
stations were discontinued and, in several cases, new station series were merged 
with nearby stations to have more data in years close to the present. In the shorter 
period (from 1951) we use 500 stations instead of the 461 stations previously 
used. From the previously used 461 stations, ~20 stations were deleted due to too 
much missing value and ~60 new stations, previously not used during the 
homogenization were added. The 500 data series for the shorter period (from 
1951) includes the 131 data series which are available for the long period. The 
amount of missing data is not zero in the present either, because we use data from 
areas with higher spatial variability of precipitation (mountainous areas), where 
we have found stations that have been in operation for several decades then have 
stopped and there are no other stations in the vicinity to merge with. 

3.1. Expansion of the station system before 1951 

As shown above, the Hungarian precipitation climate database is currently based 
on two station systems: 131 stations from 1901, and 500 stations from 1951 
(marked as different MASH systems later). The large jump in the number of data 
series from 1951 is explained by the fact that the majority of data series in the 
database were digitized from the mid-20th century. Extensive precipitation 
measurements in Hungary began in the 1850s. Recently, as a new achievement, 
all the monthly precipitation data have been collected from the beginning of 
measurements to 1950 (Fig. 1), which have not yet been digitized. This allowed 
a significant expansion of the station systems used for homogenization of data 
from the first half of the 20th century and the second half of the 19th century. In 
the last year, the monthly precipitation totals of all precipitation stations in 
Hungary were collected and digitized since the beginning of the measurements. 
Following this, new station systems were established, homogenized, and 
interpolated, which provided the first insight into the precipitation conditions in 
Hungary since the beginning of the measurements. Figs. 2 and 3 show the number 
of available precipitation data series for the first half of the 20th century and the 
second half of the 19th century. 
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Fig. 1. Example for climatological books containing monthly precipitation data for Hungary. 
 
 
 
 

 

 
Fig. 2. Number of monthly precipitation station data series in Hungary (within today’s border) 
during the first half of the 20th century. 
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Fig. 3. Number of monthly precipitation station data series in Hungary (within today’s border) 
during the second half of the 19th century. 
 
 
 
 
 
 
 
Major station network expansions took place in the early 20th century and in 

the 1930s, so that the previous homogenization from 1901 onwards in one step 
was replaced by a two-step homogenization in the first half of the 20th century. 
The devastation of World War II is reflected in the temporary cessation of 
measurements at about 70% of the precipitation stations by 1945. 

In the second half of the 1800s, the expansion of the network of stations was 
relatively continuous with an accelerating trend from the 1870s onwards. Regular 
measurements in different parts of the country started in 1854, under the control 
of the then Austrian Meteorological Institute (now GeoSphere Austria), so that 
1854 can be considered as the beginning of precipitation measurements in 
Hungary. For the second half of the 19th century, the homogenization took place 
in three steps. 

So, in total, there are six steps in the homogenization of precipitation, from 
1854 to the present: from 1854 30, from 1870 50, from 1881 124, from 1901 318, 
from 1931 402, and from 1951 500 station data series (Fig. 4) are homogenized, 
any missing data is completed, and the overall resulting time series are quality 
controlled. 
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Fig. 4. The six MASH systems and the location of the precipitation stations used within them. 

4. Results 

4.1. Results of homogenization 

The homogenization is carried out in a total of six separate station systems, where 
the inhomogeneities (monthly, seasonal, and annual) detected in each station 
system are harmonized during the homogenization procedure. Of course, MASH 
systems with shorter periods include the stations with longer data series (e.g., 
MASH2 system includes MASH1 data series from 1870). Table 1 presents a 
summary of the main verification statistics for the annual precipitation sum for 
each station system. 
 

Table 1. Main verification statistics of homogenization for annual precipitation sum 
 

MASH1 MASH2 MASH3 MASH4 MASH5 MASH6 
Number of series 30 50 124 318 402 500 
Critical value (significance 
level: 0.01) 28.00 28.00 28.00 28.00 29.00 29.00 

Test statistics before 
homogenization 87.62 87.57 122.67 73.19 53.17 46.27 

Test statistics after 
homogenization 28.42 28.16 30.74 29.11 25.58 25.18 

Relative modification of 
series 0.30 0.28 0.25 0.19 0.15 0.12 

Representativity of station 
network 0.55 0.56 0.61 0.67 0.69 0.70 
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Before homogenization, the average test statistics for all station systems is 
well above the critical value, while the test statistics after homogenization are 
close to or below the critical value, so the precipitation database can be considered 
homogeneous at the end. The modification of the data series is of course greater 
for longer data series, as longer data series contain more inhomogeneities, for 
example due to the more instrument changes and relocations. 

The inhomogeneities due to relocations are illustrated well by the annual 
precipitation data of Budapest belterület (inner city) station (Fig. 5). This station 
is located at the headquarters of the HungaroMet. The largest breaks at this station 
were caused by relocations. Precipitation is currently measured on the roof of the 
meteorological observation tower, where the precipitation gauge was installed in 
1985. The current location is much windier than before, which caused a reduction 
of about 6% in the annual precipitation. 

 
 
 
 

 
Fig. 5. Raw and homogenized annual precipitation sum (left) and annual inhomogeneities 
(right) of Budapest from 1854 to 2022, black arrows indicate the relocations. 
 

 
 

 
 

4.2. Results of interpolation 

After homogenization, the data series were interpolated with the MISHv1.03 
software to a grid of 0.1°. The average of the grid points means the country 
average. 

The question arises, how similar are the gridded data sets produced from 
different numbers of data series? We aim to produce a gridded precipitation 
database, where gridded data series interpolated from 30 stations (MISH1) and 
500 stations (MISH6) show similar spatiotemporal characteristics. An ANOVA 
was carried out on the gridded datasets interpolated from six different station 
systems for the period 1951–2022 for all MISH systems. Table 2 shows the main 
ANOVA results for the annual precipitation. 
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Table 2. The most important ANOVA results for the gridded annual precipitation series for 
the different station systems in the time period 1951–2022 

 
MISH1 MISH2 MISH3 MISH4 MISH5 MISH6 

Total mean 597.87 598.40 600.30 601.46 601.19 602.05 
Total standard deviation 131.72 131.73 133.14 135.20 135.19 135.72 
Spatial standard deviation of 
temporal means 66.54 68.17 67.95 68.69 67.96 68.38 

Root spatial mean of temporal 
variances 113.17 112.02 113.99 115.79 116.23 116.58 

Temporal standard deviation of 
spatial means 97.50 96.53 97.55 98.80 99.04 99.11 

Root temporal mean of spatial 
variances 85.94 87.20 88.21 89.65 89.49 90.15 

 
 
 
 

The ANOVA results show that the total (spatial) mean for all MISH systems 
is around 600 mm, and the deviations are within 1%. The spatial standard 
deviations of temporal means and the temporal standard deviations of spatial 
means are also very similar. 

Regarding the spatial standard deviation series of temporal means and the 
temporal standard deviations series of spatial means for the years 1951–2022 
(Fig. 6), the interpolation results do not show significant differences from year to 
year. The ANOVA results are also very similar for the drier and wetter years. 

 
 
 
 
 
 

 
Fig. 6. Spatial mean series (left) and spatial standard deviation series (right) of annual 
precipitation (in mm) for the different MISH systems (indicated by different colors) from 1951 
to 2022. 
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Comparing the grid point data series produced from fewer stations with the 
densest grid using 500 stations, we find that the absolute values of the mean errors 
(ME) for the spatial means are below 1 mm for all months in the period 1951–
2022, and furthermore, the RMSE values are below 5 mm (Fig. 7). Therefore, also 
the spatial mean (country average) produced from a small number of station data 
sets can be considered representative for Hungary. These small deviations are due 
to the very good MISH-modeled climate statistical parameters, which are used in 
the interpolation procedure. In summer, much of the precipitation is convective, 
and therefore, there is much more spatial variability, which explains the slightly 
higher values in summer. 

 
 
 
 
 

 
Fig. 7. Monthly mean errors (left) and Root Mean square errors (right) in spatial means of 
precipitation for the period 1951–2022 compared to interpolation from 500 stations in different 
MISH systems. 

 
 
 
 
 

4.3. Annual precipitation 

Before the seasonal and monthly precipitation, we first analyze the annual 
precipitation sum. Fig. 8 shows the spatial means of annual precipitation for 
Hungary from 1854 to 2022. 
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Fig. 8. Spatial means of annual precipitation in Hungary from 1854 to 2022, with the fitted 
exponential trend. 
 
 
 
 
As a result of this work, precipitation conditions in Hungary can be analyzed 

from the beginning of precipitation measurements to the present day for the first 
time, including the very dry period around the 1860s. The year 2011 was the driest 
year since 1901, however, starting from 1854, there were three drier years around 
the 1860s: 1857, 1863, and 1865. In the period 1861–1866, rainfall was below 
500 mm on average for the country in each year. This drought is also illustrated 
by the fact that Lake Fert , for example, last dried up in the 1860s. The wettest 
year in Hungary since 1854 was 2010, while the wettest consecutive period of 
several years occurred around 1880, between 1878 and 1882. Over the whole 
period, the annual precipitation shows a slight increase of 6.9%, but this change 
is not significant at the 0.1 significance level. 

Climate normals 

The mean annual precipitation in Hungary is close to 600 mm as a countrywide 
average. However, there are larger variations in different parts of the country, but 
independent from the chosen climate normal period, a similar pattern of spatial 
distribution of precipitation is obtained (Fig. 9). The wettest areas of Hungary are 
the mountainous regions and the western and southwestern counties. These areas 
also receive mean annual precipitation of more than 700–750 mm. The driest part 
of the country is the central region of the Great Hungarian Plain, furthest from the 
mountains. In the central part of the Great Hungarian Plain, the least mean annual 
precipitation is below 550 mm for all climate normal periods, with variable spatial 
extent (Szentes, 2023). 
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Fig. 9. Distribution of mean annual precipitation in Hungary in different climate normal periods. 

 
 
 

4.4. Seasonal and monthly precipitation 

Winter 
 
In Hungary, the driest season is winter. The temporal mean of the spatial mean 
precipitation for the period 1991–2020 is 115.2 mm. Of all the seasons, only 
winter shows a significant change in precipitation, with an increase of 31.3% over 
the whole period. In the second half of the 19th century, extreme dry winters were 
common, with a few years of winter precipitation below 70 mm, while only a few 
wet winters occurred (Fig. 10). The wettest winters (above 150 mm) occurred in 
the 1950s, 1960s, and the last decade. 
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Fig. 10. Spatial means of winter precipitation in Hungary from 1854/1855 to 2021/2022,  
with the fitted exponential trend. 

 
 
 

Regarding the precipitation for the winter months (Fig. 11), all three winter 
months show an increase, from which the change is significant only in February. 
Overall, the driest winter month is January, the wettest is December, but all three 
months remain below 50 mm on average. 

 
 
 
 

 

 
Fig. 11. Spatial means of precipitation in the winter months in Hungary from 1854 to 2022,  
with the fitted exponential trends. 
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Spring 
 
The temporal mean of the spatial mean precipitation for the period 1991-2020 is 
139.1 mm in spring. Over the whole period, spring precipitation shows a decrease, 
but this change is not significant. Several very dry springs occurred until the mid-
1870s, as well as lately, since the 1990s (Fig. 12). In addition, dry springs were 
more frequent in the 1940s. However, from the late 1870s to the early 1940s, 
springs were mostly wetter than in the present day. 
 

 
Fig. 12. Spatial means of spring precipitation in Hungary from 1854 to 2022,  
with the fitted exponential trend. 

 
Among the spring months, there is a decrease in March and April and a slight 

increase in May. The decrease in March precipitation is significant. In average, 
March is the driest and May is the wettest spring month in Hungary, but April was 
drier than March several times in the last 15 years (Fig. 13). 

 

 
Fig. 13. Spatial means of precipitation in the spring months in Hungary from 1854 to 2022,  
with the fitted exponential trends. 
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Summer 

In all climate normal periods in Hungary, summer is the wettest season. The 
temporal mean of the spatial mean precipitation for the latest climate normal 
period (1991–2020) is 203.1 mm in summer. A slight increase in summer 
precipitation is detected between 1854 and 2022, however, this is not significant. 
Dry summers were frequent during the dry period of the 1850s and 1860s, but 
extreme dry summers occur in Hungary in all decades (Fig. 14). In the wettest 
summers, the spatial means exceeds 250 mm, less frequently even 300 mm. 

Fig. 14. Spatial means of summer precipitation in Hungary from 1854 to 2022,  
with the fitted exponential trend. 

There is no significant change in precipitation for the summer months, with 
June and August showing near zero changes and July showing a slight increasing 
trend (Fig. 15). Previously, June was clearly the wettest month in Hungary, but 
the slightly higher increase in July precipitation resulted in the 1991-2020 
averages for June and July being the same. 
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Fig. 15. Spatial means of precipitation in the summer months in Hungary from 1854 to 2022,  
with the fitted exponential trends. 
 
 

Autumn 
 
The temporal mean of the spatial mean precipitation for the period 1991-2020 is 
158.5 mm in autumn. No significant trend in autumn precipitation amounts is 
detected over the whole period. Dry autumns were common in the 1850s, 1860s, 
1970s, and 1980s. In spatial mean, autumns with higher precipitation (above 200 
mm) occurred more frequently around 1880 and in the first half of the 20th century 
(Fig. 16). 
 

 
 
 
 

 
Fig. 16. Spatial means of autumn precipitation in Hungary from 1854 to 2022,  
with the fitted exponential trend. 
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The wettest autumn month in average is September in Hungary, while the 
driest is November. There is a slight increase in precipitation in September and 
November, but these are not significant changes. However, in October, there is a 
significant decrease in precipitation from 1854 to 2022 (Fig. 17). 

 
 
 

 
Fig. 17. Spatial means of precipitation in the autumn months in Hungary from 1854 to 2022,  
with the fitted exponential trends. 
 
 
 
 
Fig. 18 summarizes the monthly, seasonal, and annual exponential trend 

estimates for the period 1854–2022. In most cases, non-significant precipitation 
increases are detected. Significant precipitation increases are detected only for 
February and winter, while significant precipitation decreases can be seen in 
March and October. 

The driest month in Hungary since the beginning of precipitation 
measurements was November 2011 (0.3 mm). From October to April, the monthly 
minimum precipitations are below 5 mm and only in May, June, and July are 
above 10 mm (Table 3). 

Overall, May 2010 was the wettest month since 1854 (the country mean is 
173.8 mm). Moreover, July 1878, October 1974, and August 2005 also had over 
150 mm in spatial mean precipitation. The only two months without any spatial 
mean above 100 mm, are January and February. The driest season between 1854 
and 2022 was the winter of 1857/1858, while the wettest was the summer of 2005. 
The driest year since the beginning of precipitation measurements in Hungary 
occurred in 1857, and the wettest in 2010. 
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Fig. 18. Exponential trend estimation in % for the spatial means of monthly, seasonal and 
annual precipitation, over the total period of 1954–2022 in Hungary, with =0.9 confidence 
level estimation. 

 
Table 3. The monthly, seasonal, and annual extremes in spatial means from 1854 to 2022 
with their year of occurrence, the means for the period 1991–2020, and the fitted 
exponential trends over the total period 

Month/ 
Season 

Driest Wettest 1991–2020 
means [mm] 

Exponential trend [%] 
(and =0.9 confidence 

level interval) mm year mm year 

Jan 2.2 1964 79.6 1915 32.7 22.9 (–6.7 - 61.7) 

Feb 1.8 1890 94.9 2016 36.9 53.9 (11.8 - 111.9) 

Mar 2.4 2012 112.2 1937 34.3 –27.7 (–45.3 - –4.5) 

Apr 2.4 1865 113.4 1879 40.3 –12.6 (–32.3 – 13.0) 

May 16.3 1884 173.8 2010 64.5 3.5 (–15.2 - 26.3) 

Jun 16.1 2021 144.3 1926 71.8 0.6 (–15.4 - 19.7) 

Jul 13.8 1952 156.8 1878 71.8 13.0 (–7.4 - 37.8) 

Aug 7.6 2012 160.0 2005 59.5 0.7 (–18.8 - 24.8) 

Sep 5.2 1865 129.5 1996 59.0 14.8 (–12.4 - 50.4) 

Oct 1.8 1965 155.9 1974 50.9 –28.6 (–48.8 - –0.2) 

Nov 0.3 2011 127.8 1965 48.6 6.2 (–21.7 - 44.2) 

Dec 3.4 1972 107.8 1874 45.6 13.5 (–15.0 - 51.5) 

Winter 29.7 1857/1858 206.2 1976/1977 115.2 31.3 (11.6 - 54.4) 

Spring 60.3 1854 262.1 2010 139.1 –8.1 (–18.6 - 3.7) 

Summer 99.3 1857 322.6 2005 203.1 8.3 (–4.2 - 22.3) 

Autumn 45.6 1986 287.6 1952 158.5 3.3 (–11.7 - 20.8) 

Year 335.0 1857 980.4 2010 615.9 6.9 (–0.6 - 15.1) 
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5. Summary 

Recently, significant changes have been made in the availability of the 
homogenized and gridded climate precipitation database produced by the Climate 
Department of the HungaroMet Hungarian Meteorological Service. The daily 
precipitation database was renewed, and all monthly precipitation data from the 
period before 1951 up to the beginning of the precipitation measurements were 
collected and used together with the existing station systems in the 
homogenization and interpolation procedure. 

The MASH homogenization procedure of precipitation consists of six major 
steps from 1854 to the present: from 1854 30, from 1870 50, from 1881 124, from 
1901 318, from 1931 402, and from 1951 500 station data series were 
homogenized, the missing data were completed, and the series were quality 
controlled. 

After homogenization, the data series were interpolated with the MISH 
method to a 0.1° resolution grid. The average of the grid points gives the country 
average. Comparing the grid point data series produced from fewer stations with 
the densest grid using 500 stations, we found that the absolute values of the mean 
errors (ME) for the spatial means are below 1 mm for all months in the period 
1951–2022, and furthermore, the RMSE values are below 5 mm. Therefore, also 
the spatial mean (country average) produced from a small number of station data 
sets can be considered representative for Hungary. These small deviations are due 
to the very good MISH-modeled climate statistical parameters, which were used 
in the interpolation procedure. 

In this study, we also analyzed the spatial means of annual, seasonal, and 
monthly precipitation amounts for Hungary in the period 1854-2022, moreover, 
the extreme values and the detected precipitation trends were also calculated and 
shown. 

With this new development of the Hungarian climatological precipitation 
database, a much more information-rich gridded precipitation dataset is available 
for climate studies, even for the first half of the 20th century. Finally, the most 
important result of this study is that we obtained a first insight into the 
precipitation conditions in Hungary from the very beginning of the precipitation 
measurements (i.e., from 1854) up to the present. 
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Abstract— Precipitation gauges used for observations in the 19th century are 
reconstructed and pairs of gauges are installed at two, climatologically different, regular 
weather observation sites (Norrköping and Katterjåkk). Norrköping is a quite well sheltered 
site with a low degree of frozen precipitation, while Katterjåkk is an open site with a high 
degree of frozen precipitation. One of the gauges at each site is equipped with a wind shield. 
Parallel observations are conducted from November 2016 through May 2021. Regular 
observations are also conducted manually with modern gauges and with automatic gauges 
at the sites.  

The wind shield effects (larger observed precipitation sums due to the inclusion of a 
wind shield) for the sheltered (Norrköping) and the open (Katterjåkk) sites are 7% and 16% 
for snow and 2% and 1% for rain, respectively.  

The modern gauges generally collect more precipitation than the historical shielded 
gauges, the difference is 0–8% for rain and almost up to 50% for snow. However, these 
differences can, in part, be ascribed to micrometeorologal conditions at the sites.  

The differences between observation methods are larger for snow and sleet than for 
rain. There are also larger differences in the open site than in the sheltered site.  

The most closely placed modern gauge relative to the historical gauges (automatic 
gauge in Norrköping, manual gauge in Katterjåkk) gives the most similar precipitation 
sums, suggesting that micrometeorology is more important than the observation method. 

The undercatch due to lacking wind shields in historical observations can probably 
not explain more than 20% of the increased observed precipitation in the late 19th and early 
20th century. 

The question of potential influence on climatological precipitation series due to the 
transition from historical to modern observation methods remains unconcluded.  

Key-words: pecipitation, observations, climate, meteorology, windshield  



196 

1. Introduction

The strengthening of the hydrological cycle following the ongoing climate change 
implies increases in precipitation at mid to high latitudes such as in Sweden. 
Based on observations from a national network, Schimanke et al. (2022) reports a 
long-term increase of Swedish precipitation starting in the late 19th century. 
Specifically, from the period 1961–1990 to the period 1991–2020, mean annual 
precipitation has increased by 8% with considerable seasonal and regional 
variations. Climate simulations suggest continued future increases in precipitation 
intensity and total amount in Sweden (Kjellström el al., 2018; Lind et al., 2022). 
To put future projected precipitation changes into a historical perspective and to 
assess impacts of changes in precipitation including extremes, long accurate 
observational time series are key. The homogeneity of long observational time 
series must be considered as “homogeneous time series data are essential to 
analyze climate variability and change” (Venema et al., 2020). 

Precipitation has been observed regularly over a network of stations in 
Sweden since the late 19th century, as described below. These observations 
indicate low amounts of precipitation in the period 1880–1930; similar periods 
with relatively dry climate are also reported for other European regions (Metzger 
and Jacob-Rousseau, 2020; Haslinger et al., 2019; van der Schrier et al., 2007; 
Kendon et al., 2022). However, long-time observations of river flow do not 
support the magnitude of a dry anomaly in Sweden suggested by the precipitation 
observations (Lindström, 2002). The discrepancy between observations of 
precipitation and river flow may be related to changes in evaporation or other 
environmental factors changing conditions for runoff. Also, it cannot be excluded 
that errors in precipitation observations (such as neglection of small precipitation 
amounts) may play a role. 

Traditionally, precipitation has been collected in gauges for which the height 
of the water column has been measured (Mill, 1901). This method is still in 
practice today (WMO, 2021). Early automated precipitation observations include 
the siphoned rainfall recorder (Rácz, 2021), in which the water column height of 
the collected precipitation is recorded on tape. Modern automatic gauges based 
on the collection principle usually weighs the collected precipitation rather than 
measure the water column height (Førland et al., 1996). Other automatic methods 
include the tipping-bucket-type gauge, in which small precipitation sums are 
counted and summed up, as well as optical methods (WMO, 2021). 

A particular problem with precipitation observations relates to undercatch, 
which is most pronounced in winter, as solid precipitation is more strongly 
influenced (Førland et al., 1996). The efficiency of the gauges to collect 
precipitation depends on their design but also on ambient conditions. In general, 
too little precipitation is sampled due to wind and/or evaporative loss, hence the 
term undercatch. Methods for correcting observed precipitation have been 
developed using constant, often monthly, correction factors (Legates and Wilmott, 
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1990). It has, however, been pointed out that such simple monthly factors may 
differ between different years, and that factors derived on large national/regional 
scales may not be appropriate on the local scale. For example, Stisen et al. (2012) 
promoted the idea of time-space varying correction factors for Denmark. 
Consequently, dynamic methods involving different correction factors 
considering synoptic weather conditions have been put forward (e.g., Ehsani and 
Behrangi, 2022). By applying a dynamic correction method on 4 000 rain gauges 
in the Baltic Sea region, Rubel and Hantel (2001) derived correction factors 
having maximum in February (observed precipitation to be multiplied by 1.25–
1.50) and minimum in August (1.02–1.05). It is obvious that changes in 
observation equipment may impact the undercatch and the need for correction 
factors, thereby adding one dimension to the homogenization issue.  

Potential inhomogeneities at Swedish weather stations include the 
introduction of wind shields and changes of observation gauges for precipitation 
observations starting in the late 19th century. These changes in instrumentation 
implies that it is not clear whether the large increase of precipitation sums 
observed in Sweden is real or partly an artefact of inhomogeneous observations 
caused by changing instruments and thereby different degree of undercatch. 

To address the potential role of measurement equipment in the historical 
changes in observed precipitation in Sweden, the performance of historical 
precipitation gauges relative to modern ones is evaluated. Pairs of historical 
precipitation gauges are reconstructed (see Fig. 1) and installed at two 
climatologically dissimilar weather observation sites (see Fig. 2). One gauge of 
each pair is equipped with a wind shield. The goals of the study are to: 

1. Estimate the wind shield effect, i.e., larger observed precipitation sums due
to the inclusion of a wind shield, of the precipitation observations with a
historical precipitation gauge;

2. Estimate the difference of the precipitation observations with historical
gauges and modern gauges (both automatic and manual);

3. Estimate the differences (1–2) in snowy and rainy conditions,
4. Examine how the differences (1–2) vary with air temperature and (mean and

gust) wind speed,
5. Estimate the wind shield effect for sub-zero and super-zero temperatures and

examine the difference between shielded and unshielded observations for
specific months;

6. If possible, estimate the effect of evaporation in the historical observations;
7. Estimate the network-wide undercatch due to lack of wind shields in

historical observations; and
8. Determine if it is possible to conclude from the results of the study, whether

the transition from the historical to the modern observations method could
constitute homogeneity breaks in the observational time series.
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Fig. 1. The four precipitation gauges included in this study, the historical unshielded gauge 
(top left), the historical shielded gauge (top right), the modern manually operated SMHI-
gauge (bottom left), and the GEONOR automatic gauge (bottom right).  

Fig. 2. Map of Sweden with the geographical positions of the test sites and the historical 
weather observation stations marked out, the symbols refer to the initial date of the stations. 
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A central question is if correction factors could be derived for the historical 
measurements. Note that the object of this study is to increase the homogeneity of 
the historical precipitation observation time series, not an effort to recreate true 
precipitation. Therefore, no full correction method, including aerodynamic, 
evaporation, and wetting correction factor for the different gauges, is considered.   

2. The history of precipitation observations in Sweden

Regular precipitation observations in Sweden started in the mid-18th century at 
the astronomic observatories in Uppsala (1723), Lund (1748), and Stockholm 
(1786). In the digital archives there is also a short precipitation series (1730–1741) 
from a rural site (Risinge) in Östergötland. In the early 19th century, observations 
were also conducted at five additional locations (in the cities of Växjö, Strängnäs, 
Västerås, Gävle, and in a rural site in northern Hälsingland which is not yet 
digitally available), and in 1858–1860 a small network of about 20 additional 
meteorological station was set up on the initiative of the Royal Swedish Academy 
of Sciences (Eriksson, 1983). These first stations were unevenly distributed 
around the country with Jokkmokk being the northernmost station (66.6 °N) and 
Lund the southernmost (55.7 °N), see Fig. 2. 

The precipitation measurements were mainly conducted by the collection of 
precipitation in zinc gauges with a mouth of 1 206.5 cm2 (Alexandersson, 2002) 
corresponding to 1 Swedish square foot (Hamberg, 1911). Following the 
establishment of “Meteorologiska centralanstalten” (MCA), a precursor of the 
Swedish Meteorological and Hydrological Institute (SMHI), a gauge with a 
1 000 cm2 mouth was introduced in 1873 as an adaptation to the metric system. 
This gauge is reconstructed under the current study and is henceforth referred to 
as the “unshielded gauge”, see Fig. 1. In 1878, a network of more than 300 
precipitation observation stations were set up with the aid of the agricultural 
organization Kungliga Hushållningssällskapen (Hamberg, 1881). From around 
1880 precipitation observations conducted at lighthouses where taken over by 
“Nautisk-meteorologiska byrån” (the Nautical Meteorological Bureau, which 
later became a part of the precursor of SMHI). The observation method was 
identical to that of MCA (Nautisk-meteorlogiska byrån, N.D.) 

In the period from 1893 to 1935, cone shaped Nipher wind shields were 
introduced to the vast majority of precipitations gauges. The 1 000 cm2 mouth 
zinc gauge with wind shield is henceforth referred to as the “shielded gauge”, see 
Fig. 1. However, exactly when the first wind shields were installed and when the 
entire network of precipitation gauges was equipped with wind shields is 
unknown, due to insufficient documentation. In 1930, most of the precipitation 
stations had a wind shield (Alexandersson, 2003). In the mid 20th century, the 
1 000 cm2 mouth gauges were successively replaced with gauges with a mouth of 
200 cm2. This size of gauges is currently used at SMHI’s manual observation 
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stations. In the 1960s, the zinc gauge was replaced by a light metal gauge 
(henceforth “SMHI-gauge”, see Fig. 1), which is easier to handle and not as 
sensitive to frost weathering as the zinc gauge. Potential losses both due to 
spillage and leakages were thus restricted (Eriksson, 1983). The current SMHI-
gauges have a Nipher wind shield.  

Automatic observations are currently conducted with a GEONOR 
instrument (henceforth “automatic gauge”, see Fig.1.), equipped with an Alter 
wind shield. Presently, SMHI operates more than 600 precipitation observation 
stations, out of which 120 are automatic.  

A summary of the types of precipitation gauges historically used in the 
Swedish observation network is listed in Table 1. 

Table 1. List of rain gauges used in the Swedish observation network 

Approximate time 
of appearance 

Area of 
mouth/cm2 

Material Wind shield Type 

1723 1 206.5 Zinc – Manual
1873 1 000 Zinc – Manual1

1893 1 000 Zinc Nipher Manual2

~1950 200 Zinc Nipher Manual
~1960 200 Aluminum alloy Nipher Manual3

1995 200 Aluminum alloy Alter Automatic4

1 “Unshielded gauge” ; 2 “Shielded gauge”;  3 “SMHI-gauge”; 4 “Automatic gauge” 

3. Previous studies of Swedish precipitation measurement methods

The arguably largest source of error in precipitation measurements is the 
turbulence around the mouth of the gauge (Alexandersson, 2003). Hamberg 
(1911) cited field studies in the years 1890–1895, where the loss in measurements 
without a wind shield from May through October was found to be on average 12% 
compared to a pit-gauge. For strong winds the average loss was evaluated to be 
up to 34%. The difference between gauges with and without wind shield at 1.5 m 
height was up to 6%, even up to 20% for strong winds. From November through 
April, 10–35% more precipitation was measured with the shielded gauge 
compared to the unshielded one, in very windy conditions differences were 60–
70%.  
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In a field study in Särna in 1907–1910 (Hamberg, 1911), a gauge with a wind 
shield on average collected 11% more precipitation than a gauge without a wind 
shield. The largest departure was found for winter (DJF), when the shielded gauge 
collected 35% more than the unshielded gauge. The corresponding departure in 
summer (JJA) was 3%. Winter precipitation being mainly in the form of snow is 
mentioned as possibly contributing to this seasonal difference.  

Hamberg (1881, 1911) speculates that a correction for the annual 
precipitation for a windswept station with considerably long winter should be 
about 20%. For summer months the corrections should not exceed 10%, but for 
winter months a correction of up to 100% could be required.  

Bergsten (1954) studied the difference in observed precipitation between the 
periods 1901–1930 and 1921–1950 for two sets of stations; stations that were 
equipped with a wind shield in both periods (homogeneous) and stations where 
the screen was introduced in the latter period (inhomogeneous). The wind shield 
was estimated to increase observed precipitation by 10–15% with some regional 
differences. The wind shield effect on the measurements in northern Sweden was 
less clear than in the south, a result Bergsten (1954) considered to be counter-
intuitive.  

Eriksson (1983) studied the observational time series 1931–1980 and argued 
that 1951–1980 probably is more homogeneous than 1931–1960 due to the more 
complete use of wind shields, however did not give any quantitative estimate. 

Eriksson et al. (1989) estimated a wind related error in precipitation 
measurements of 2–15% for rain and 5–50% for snow. Eriksson et al. does not 
explicitly state whether these estimates refer to observations with or without wind 
shield, however, the standard method of precipitation observations at the time 
included wind shield. Alexandersson (2002) estimated an increase in measured 
precipitation of 5–10% following the introduction of wind shields.  

Fredriksson and Ståhl (1994) conducted parallel measurements at the former 
observation site of SMHI’s headquarter (located a couple of hundred meter 
southwest of the current observation site)"with three different automatic 
precipitation gauges alongside the regular manual precipitation measurements 
from October 1993 to March 1994 as a part of the preparation for the transfer to 
automatic measurements in the autumn of 1995 (Alexandersson, 2000). The 
automatic gauges generally recorded less precipitation than the manual 
measurements, with largest monthly departures of about 15%. The GEONOR 
gauge, currently used at SMHI weather observation stations (here referred to as 
the “automatic gauge”), delivered results closest to the manual measurements with 
an average departure of about 5% over the six months. 

In their report from the extensive intercomparison study of Nordic 
precipitation gauges at the Jokioinen Observatory, Førland et al. (1996) cited a 
number of studies on the ratio between precipitation measured in shielded and 
unshielded gauges. Ratios are listed for rain (1.00–1.09), snow (1.21–1.75), and 
mixed (1.08–1.26). From the data of the Jokioinen observatory it could be 
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concluded, that the shielded SMHI-gauge caught 68.6% of the weight of the snow 
caught by the reference double-fenced gauge and 95.6% of the weight of the rain. 

Alexandersson (2000) found, by comparing all simultaneously active 
automatic and manual stations in Sweden, that the automatic gauges observe on 
average 16% less precipitation than the corresponding manual measurements. The 
difference is largest wintertime when the automatic gauges observe 22% less 
precipitation than the manual measurements. The corresponding value for 
summer is 12%. The difference between manual and automatic measurements at 
the sites, where these were conducted in parallel, was found to vary considerably 
between individual stations, but the difference between manual and automatic 
measurements was also found to be smaller when the whole network of stations 
was considered. Alexandersson (2000) argues that difference in wind exposure 
probably is the main factor of the discrepancy. 

Alexandersson (2003) used a correction factor for the SMHI-gauge between 
1.5% and 12% for rain and between 4% and 36% for snow depending on how 
windswept the station is. The stations were divided into seven wind classes. 
Correction factors are for example applied in the estimation of true precipitation 
used in the gridded climate data product PTHBV (Johansson and Chen, 2003).  

While the effect of the introduction of the wind shield and the automation 
has been object of the above mentioned studies, the potential inhomogeneity due 
to the shift to the smaller SMHI-gauge has thus far not been studied. 

4. Climatology and description of the measurement sites

For the current project, two observation sites were selected: Norrköping and 
Katterjåkk, see Fig. 2. The climatology of these sites are briefly described below. 

4.1. Norrköping 

Norrköping lies at the end of Bråviken bay in the northeastern part of the region 
of Östergötland. The weather station is located at the SMHI headquarters about 
2 km southwest of the city center, see Fig. 3. The area is slightly hilly with mostly 
lower buildings. The historical gauges were placed inside the fenced area of the 
official automatic station. The SMHI office buildings are found 60–100 m to the 
south. Additionally, there are some trees around the site. Unofficial manual 
measurements were conducted just outside the observations site. 
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Fig. 3. Map of a part of Norrköping with the observation site marked with a red/dark grey 
dot. The marked location is approximate. 1:10 000. (Lantmäteriet, 2023) 

The weather stations in Norrköping (station number 86340) is considered to 
have a wind class 3 of 7, with the general criteria: “Quite well shielded site, where 
there can be a minor opening towards a larger field or lake. Well shielded site if 
it is situated in a generally windswept region”. The corresponding wind correction 
is 3.5% for rain and 8.5% for snow (Alexandersson, 2003).  

The mean annual observed precipitation (without corrections) in Norrköping 
(1991–2020) is 536 mm. The driest month is March (27 mm), the wettest month 
is July (65 mm), see Fig. 4. The average daily maximum temperature in July is 
23 °C, the average daily minimum temperature in January is 4 °C. In the period 
for which observations of precipitation form is available (between 2000 and 
2010), frozen precipitation (snow, hail, graupel, ice needles) was reported at least 
once for all months from October (about 3% of the precipitation occasions were 
reported as frozen) through April (13%). About 60% of the precipitation 
occasions in February was reported as frozen precipitation.  

Preliminary calculations of the average monthly maximum snow depth 
(1981–2010) in Norrköping show that the deepest average maximum snow depth 
is in February with 21 cm, see Fig. 5. In this period, a measurable snow cover on 
the 15th each month was more common than not from December through March. 

The dominant wind direction in Norrköping over the last twenty years 
(2004–2023) was west-southwest, and the annual mean wind speed was 2.2 ms-1. 
The windiest season was winter (DJF) with at mean wind speed of 2.5 ms-1, the 
least windy season was summer (JJA) with a mean wind speed of 2.0 ms-1. 
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Fig. 4. Average monthly precipitation (bars), daily maximum and minimum temperatures 
(black lines) 1991–2020.  

Fig. 5. Average maximum monthly snow depth (1981–2010) in Norrköping and 
Katterjåkk.  

4.2. Katterjåkk 

Katterjåkk is situated in the mountainous region in the northwestern part of the 
province of Lappland in northern Sweden. Within a radius of 10 km, the mountain 
peaks reach up to 1 100 m above the station height. The weather station lies on a 
southern hillside, east of a ravine where the Katterjåkk creek runs, see Fig. 6. In 
Katterjåkk, there was both an automatic (station number 18850) and a manual 
(station number 18820) weather observation station, separated by about 50 m with 
the automatic station to the south of the manual station. The mast for wind 
measurements is placed on a small hill 40 m further to the south of the automatic 
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station. The automatic station lies in a slight depression, while the site of the 
manual station is rather plain and is therefore quite windswept. An office building 
offers some shelter in the sector southeast to south-southwest and a small birch 
grove in the sector north to north-northeast. The historical gauges were placed 
close to the regular precipitation gauge of the manual observation site. 

 
 
 

 
Fig. 6. Map of Katterjåkk with the observation site marked with a red/darkgrey dot, the 
automatic station is marked with a green/light grey dot. The marked locations are 
approximate. 1:10 000. (Lantmäteriet, 2023)  
 
 
 
The weather stations in Katterjåkk is considered to have a wind class 5 of 7, 

with the general criteria “Open site with only partial protection from buildings or 
trees, sites on a hill or hillside in the inland”. The corresponding wind correction 
is 6% for rain and 17% for snow (Alexandersson, 2003). 

The average annual observed precipitation (without corrections) in 
Katterjåkk (1991–2020) is 859 mm. The driest month is April (42 mm), the 
wettest month is September (94 mm), see Fig. 4. The average daily maximum 
temperature in July is 16 °C, the average daily minimum temperature in February 
is 14 °C. Between 1991 and 2020, the highest share of precipitation occasions 
was reported as frozen in February (94%). The lowest share occurred in July (1%).  

Preliminary calculations of the average monthly maximum snow depth 
(1981–2010) in Katterjåkk show that the deepest average monthly maximum 
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snow depth is in April with 154 cm, see Fig. 5. In at least fifteen of these thirty 
years, there was a measurable snow cover on the 15th of the month from October 
through May. 

The dominant wind direction in Katterjåkk over the last twenty years (2004–
2023) was west-northwest, and the mean wind speed was 3.3 ms-1. The windiest 
season was spring (MAM) with at mean wind of speed of 3.8 ms-1, the least windy 
season was summer (JJA) with a mean wind speed of 3.0 ms-1. 

5. Methods

5.1. Measurements 

Parallel daily precipitation observations were conducted with the newly produced 
historical 1 000 cm2-mouth gauge (referred to as historical gauges) with and 
without the wind shield (shielded and unshielded gauge, respectively) in 
Norrköping and Katterjåkk from November 2016 through May 2021. The mouth 
of the gauges was about 1.5 m over the ground in Norrköping, which is common 
practice (WMO, 2021). The gauges in Katterjåkk were placed slightly higher, 
about 2.3 m, in anticipation of large snow depths in Katterjåkk. In Norrköping, 
the observations were conducted every day approximately at 08:00 local time, in 
Katterjåkk at 07:00. The water in the gauge was poured into a 1 liter glass 
container, which was weighted. Snow was melted in room temperature for about 
one hour before measuring. Two pairs of gauges were used for each of the 
observation sites (with and without wind shield) to make sure that one pair of 
gauges was always open for precipitation, even when the measurements were 
ongoing or snow was being melted. In the seasons when precipitation mainly falls 
as rain, a funnel was installed in the mouth of the gauge to limit loss due to 
evaporation. Since snow would block the mouth of the funnel, the funnel was 
removed under the colder seasons when there is chance for snow and the loss due 
to evaporation is substantially smaller. All forms of precipitation (rain, snow, hail, 
graupel) were measured along with condensed water from fog, frost, and dew. 

Occasionally, especially over weekends, the gauges were not emptied daily, 
which means that some values in the series correspond to accumulated 
precipitation over longer time periods than the ideal 24 h. For frequency of 
different accumulation times, see Fig. 7. 

Especially in Katterjåkk, snow cover can change the local wind environment 
around the gauge, as the snow cover shift the effective height of the precipitation 
observations and the roughness of the surrounding terrain. The observed snow 
cover over the test period is described in Fig. 8. The deepest observed snow depth 
in Katterjåkk was 229 cm, in the end of March 2020. 

Air temperature and wind speeds were observed at the official automatic 
weather stations. Precipitation values are available at 15-minute resolution, while 
2 m air temperatures and wind speeds are available at hourly resolution. 
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Fig. 7. The frequency of different accumulation times for the measurements with the 
historical gauges.  

 

 

 
Fig. 8. Observed snow depth in Norrköping and Katterjåkk during the test period.  
 
 
 

5.2. Calculations 

Precipitation of three types (rain, sleet, and snow) observed in Norrköping and 
Katterjåkk with the automatic gauge (a), manual SMHI-gauge (m), jointly referred 
to as modern gauges, and with the unshielded (u) historical gauge are compared with 
corresponding observations with the shielded (s) historical gauge. Ordinary least 
squares regression, forced through the origin, is applied. Regression slopes for 
method i ( is), with shielded gauge data as target variables, are obtained. Mean 
absolute error (MAE) between the precipitation observed, e.g., with the SMHI-gauge 
and the respective output of the linear regression models are calculated: 
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MAEi =  abs(xi  [xs × is + is]) / N, (1) 

where xi is the observed value with method i (s refers to the observational method 
with the shielded historical gauge),  is the intercept, and N is the number of 
observations. The MAE is thus a metric of how well the linear regression generally 
reproduces the individual observed values. Note that in order to convert these 
regression slopes to correction factors to make observations with method i 
homogeneous with method j (aij) at least one of the three methods, regression slopes 
must be inverted as homogenization of historical time series either seeks to recreate 
the conditions of the earliest (e.g., Moberg et al., 2002) or, as it is most common, 
the latest observation (Venema, 2020). Thus, for most applications the correction 
factors to make unshielded historical gauge observations homogeneous with 
shielded historical gauge observations are identical to the corresponding regression 
slope (aus = us), while the correction factors to make shielded historical gauge 
observations homogeneous with modern methods observations are the inverse of 
the corresponding regression slopes obtained here (asm = ms

-1, asa = as
-1). 

The wind shield effect is defined here as the deviation from the regression 
slope ( us  1). A positive wind shield effect indicates that larger sums are 
observed with the wind shield. Since precipitation types for historical 
observations are not easily accessible, the wind shield effect is also calculated for 
sub-zero and super-zerotemperatures, where temperature thus is a proxy for 
precipitation types.  

For the irregular measurements with accumulation times more than one day, 
sums for the corresponding observations of the modern gauges were used.  

For the Katterjåkk series, the classification of precipitation type is gathered 
from information in the observers notes. For Norrköping it is instead deduced 
from the automatic weather station categorization of present weather. This is due 
to missing information of precipitation type in the observes notes in Norrköping. 

To evaluate the sensitivity of the undercatch due to lacking wind shield on 
wind speed and temperature, series of ratios between precipitation observed with 
the unshielded gauges and other methods are calculated and compared with 
calculated averages of air temperature, mean wind speed (10-minute), and wind 
gust speed for the accumulation time.  

For occasions when the gauges were not emptied daily, the ratio between 
total daily sums for the period from the automatic gauge and the accumulated 
precipitation in the historical gauge was calculated and binned according to the 
number of days of accumulation. Differences between the two were taken as a 
measure of evaporative loss. 

For all calculations, only precipitation sums equal to or larger than 1 mm are 
used. 

To estimate the undercatch due to lacking wind shields in historical 
observations, all digitally available daily precipitation observations prior to the 
year with the first installed wind shield at the Swedish weather observation 
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stations (1893) are studied. Only precipitation observations where concurrent 
mean daily temperature data are available are considered. The precipitation data 
are multiplied by the wind shield effect correction factor aus according to whether 
the corresponding mean daily temperature was sub-zero (a-) or super-zero (a+). 
The ratio of the corrected and uncorrected sums is calculated. From the study 
correction factors for wind classes 3 (a3) and 5 (a5) can be deduced. As a raw and 
conservative estimate, precipitation is corrected according to the stations wind 
class (Alexandersson, 2003). Stations with wind class 1 are not corrected (a-

1 = 
a+

1 = 1). Stations with wind class 3 are corrected according to the correction 
factors that can be deduced from the Norrköping test series (a-

3, a+
3). Stations with 

wind class 5 to 7 are corrected according to the correction factors that can be 
deduced from the Katterjåkk test series (a-

5, a+
5). Stations with wind class 2 are 

corrected with the averages of corrections factors 1 and 3 (a2 = [a1 + a3] / 2), 
stations with wind class 4 are corrected with the averages of corrections factors 3 
and 5 (a4 = [a3 + a5] / 2). Stations that were closed prior to Alexandersson’s work, 
and therefore, do not have a windclass ascribed to them are treated as class 3 
stations, since class 3 stations have the median correction factor.  

The precipitation time series prior to the installation of the first wind shield 
(as those used in the analysis described above), are each compared with 
corresponding observations from the same station in an equally long period 
starting in 1930, where most precipitation station were equipped with a wind 
shield (Alexandersson, 2003). The dates are matched such that only data where 
the same day of year is available both in the late and the early period are 
considered. The total difference in accumulated precipitation between the early 
and late periods are 16%.  

The results are also compared with the mean difference between the first 
consecutive standard normal period (WMO, 2017) of SMHI’s climate indicator 
annual precipitation (SMHI, 2023, Sturm, 2024) 1881–1910, and first standard 
normal period 1931–1960, where wind shields were legio. The mean annual 
precipitation for the entire network increased by 8% from the period 1881–1910 
to 1931–1960 according to this estimate.  

6. Results 

6.1. Norrköping 

The wind shield effect for the historical gauges in Norrköping is about 7% for snow 
and 2% for rain, see Table 2. The rain observation results, for which the MAE 
between the regression model output and the observed values is smallest of all the 
regression models presented in this study, are shown as an example in Fig. 9. The 
MAE for all precipitation types is 0.06 mm. The wind shield effect for sub-zero and 
super-zero temperatures is 2% and 9%, respectively.  
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Table 2. Regression slope ( ) and mean absolute error (MAE) for linear regression models 
for precipitation observed in Norrköping with the unshielded historical, modern (SMHI), 
and automatic gauges, respectively, all with the precipitation observed with the shielded 
historical gauge as the target variables  

Precipitation 
types 

Without wind screen SMHI  Automatic 
 MAE/mm  MAE /mm  MAE /mm 

All 1.02 0.06 0.96 0.94 1.00 0.39 
Rain 1.02 0.04 0.95 0.91 1.00 0.36 
Sleet 1.01 0.07 0.95 1.00 0.99 0.74 
Snow 1.07 0.08 0.98 1.03 1.01 0.35 

 
 
 
 

 
Fig. 9. Linear regression (black line) for daily precipitation sums observed in Norrköping 
with the shielded historical gauge with precipitation sums observed with the unshielded 
historical gauge as the explanatory values, the 1:1 relationship is depicted as a grey line.  

 

 
 

The automatic gauge collects on average similar sums as the shielded gauge. 
The uncertainty is on average 0.4 mm, though higher for sleet (0.7 mm). The SMHI-
gauge collects on average 4% more precipitation than the shielded gauge with an 
uncertainty of 0.9 mm. The snow observations are closer than rain and sleet between 
the SMHI-gauge and the shielded gauge, however, the uncertainty of the linear 
model is somewhat larger for snow observations than for rain and sleet.  
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Wind speed and temperature was not found to correlate significantly with 
the difference of precipitation sums between the methods. For example, for the 
ratio of the measurements with the unshielded gauge and the automatic gauge, the 
correlation with air temperature was  = 0.19, with mean wind speed  = 0.10, 
and with maximum wind gust speeds  = 0.07 (not shown).  

There is a significant variation in the amount of mean precipitation between 
different months between the historical gauges, see Fig. 10. In winter and spring 
(December–May), the shielded gauge collects 6% more precipitation as a median, 
which is larger than the median (2%) for the summer and autumn months (June–
November). 

No clear signal of evaporation could be concluded from the study of 
observations with longer accumulation times (not shown). 

 
 

 
Fig. 10. Ratio of daily precipitation sums observed in Norrköping with the shielded and 
unshielded gauges for specific months. Horizontal black lines indicate the median, the 
boxes covers the 25- and 75-percentiles, the whiskers spans over the entire range.  
 
 
 

6.2. Katterjåkk 

The wind shield effect of the historical gauges in Katterjåkk is on average 11%, 
see Table 3. The effect is larger for snow (16%) than for rain (1%). The larger 
wind shield effect for snow is also reflected in the MAE, which is 0.4 mm for 
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snow and 0.08 mm for rain. The wind shield effect for sub-zero and super-zero 
temperatures is 4% and 15%, respectively. 

Table 3. Regression slope ( ) and mean absolute error (MAE) for linear regression models 
for precipitation observed in Katterjåkk with the unshielded historical, modern (SMHI), 
and automatic gauges, respectively, all with the precipitation observed with the shielded 
historical gauge as the target variables  

Precipitation types 
Without wind screen SMHI  Automatic 

 MAE /mm  MAE /mm  MAE /mm 
All 1.11 0.47 0.88 0.75 0.66 1.84 

Rain 1.01 0.08 0.98 0.19 0.92 1.36 
Sleet 1.08 0.59 0.88 0.71 0.64 3.87 
Snow 1.16 0.42 0.74 0.98 0.51 1.29 

 
 
 
 
 

The SMHI-gauge and the automatic gauge collect on average 12% and 34% 
larger sums than the shielded gauge. Again, the departures are larger for snow 
(26% and 49% larger sums, respectively) than for rain (2% and 8%, respectively). 
The uncertainty of the regression model is larger for the automatic gauge 
measurements (1.8 mm) than for the SMHI-gauge (0.8 mm). The results of the 
sleet measurements with the automatic gauge, for which the MAE is largest of all 
the regression models presented in Tables 2. and 3, is shown as an example in 
Fig. 11.  
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Fig. 11. Linear regression (black line) for daily sleet observed in Katterjåkk with the 
shielded historical gauge with sleet observed by the automatic gauge as the explanatory 
values, the 1:1 relationship is depicted as a grey line.  
The difference between observations with the unshielded gauge and SMHI-

gauge does not significantly depend on air temperature, mean wind speed, or wind 
gust speed.  

There is no clear month to month signal of the ratio of the historical gauge 
observations, see Fig. 12. In winter and spring (December–May), the shielded 
gauge collects 43% larger sums than the unshielded gauge as a median, in summer 
and autumn (June–November) this number is 11%.  

No clear signal of evaporation could be concluded from the study of 
observations with longer accumulation times (not shown).  

 
 
 

 
Fig. 12. Ratio of daily precipitation sums observed in Katterjåkk with the shielded and 
unshielded gauges for specific months. Horizontal black lines indicate the median, the 
boxes covers the 25- and 75-percentiles, the whiskers span over the entire range. 
 
 
 

6.3. Evaluation of undercatch of historical observations 

The earliest digitally available daily precipitation observations are from 1836 
(Uppsala). In total, 49 weather stations have concurrent daily precipitation and 
mean temperature data in the period 1836–1893. More than 400 000 observations 
were included which corresponds to on average 23 years of data per station. 



214 

Precipitation observed during days with sub-zero temperatures (28% of the 
studied days) and super-zero temperatures (72%) were multiplied with correction 
factors according to the stations’ windclass, see Table 4. In total, the corrected 
precipitation was 3% larger than the uncorrected precipitation. The difference was 
largest in winter (6%) and smallest in summer (2%). In spring the difference was 
4%, in autumn 3%. 

 
 
 
Table 4. Correction factors used to estimate the undercatch of historical precipitation 
observations according to the stations’ windclass (Alexandersson, 2003). Sub-zero (-) and 
super-zero (+) temperatures are used as a proxy for precipitation form  

Wind class Formula a- a+ Number of 
historic stations* 

Modern 
station** 

1 a1 1 1 1 4%  
2 a2 = [a1 + a3]/2 1.045 1.01 8 24%  
3 a3 1.09 1.02 14 35%  
4 a4 = [a3 + a5]/2 1.12 1.03 10 24%  
5 a5 1.15 1.04 3 9%  
6 a6 = a5 1.15 1.04 2 3%  
7 a7 = a5 1.15 1.04 0 0.5%  

Not 
defined 

aND = a3 1.09 1.02 12   

*   Stations with digitally available concurrent daily precipitation and temperature 
observations prior to 1893 

** Share of stations listed in Alexandersson (2003) 

 
 

7. Discussion 

For the measurements in Norrköping, the wind shield effects of the historical 
gauges are on the low end of previous estimates of the wind shield effect 
(Hamberg, 1911; Bergsten, 1954; Eriksson et al., 1989). For the measurements in 
Katterjåkk, the wind shield effect corresponds well to the value discussed by 
Hamberg (1911).  

In general, snow gives more diverse observations between methods than rain, 
which is consistent with previous results. There are larger discrepancies between 
the parallel observations in Katterjåkk compared to Norrköping. This may partly 
be explained by the longer distance between the official automatic station and the 
location of the historical measurements. The more variable snow depth, and 
thereby, aerodynamic conditions around the site may also play a role.  
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In Katterjåkk, the observations with the historical gauges are better 
correlated with the modern manual SMHI-gauge observations than the automatic 
observations. In Norrköping, observations with the historical gauges resulted in 
observations closer to those of the automatic gauges. Micrometeorology (i.e., 
proximity in the location of two parallel observations) thus appears to be more 
important than the observation method, a similar conclusion was previously 
drawn by Alexandersson (2000).  

The MAE of the linear regression models for “sleet” is higher than for snow 
and rain, probably partly due to the fewer observations and partly due to the more 
diverse nature of the precipitation types classed as “sleet”. 

The amplitude and the variability of the ratio between shielded and 
unshielded observations is larger in winter than in summer, probably due to the 
larger contributions of frozen precipitation. This pattern is not as clear for the 
Katterjåkk observations. The lag between the seasonal cycles of snow depth, and 
the share of frozen precipitation could perhaps explain the weak signal.  

No estimate of loss due to evaporation could be deduced from the results. 
The study was not primarily designed to estimate evaporation loss, and the rather 
simple method employed proved insufficient. More detailed analysis of precise 
timing of precipitation and dewpoint deficits in the longer accumulation periods 
is suggested for a future study. 

The estimated undercatch from lacking wind shields in historical observations 
(1836–1893) is smaller than the network-wide difference of precipitation between 
periods before 1893 and after 1930, as described above, and that of the two standard 
normal periods in the climate indicator (1881–1910 and 1931–1960). The 
undercatch should be considered to be a rough estimate, as estimates of wind shield 
effects are only obtained for Norrköping (windclass 3) and Katterjåkk (windclass 
5) which can be converted to correction factors. Correction factors for stations with 
other wind classes can only be approximated. It is also not known, how 
representative these wind shield effects are for other stations within same wind 
class. The Katterjåkk wind shield effect for snow is for example afflicted by 
relatively large uncertainty. However, since most stations have a windclass between 
2 and 4, the Norrköping wind shield effects have relatively small uncertainties and 
compares well with literature values, the estimate is still useful. It is also not 
straightforward to make an estimate of the difference in precipitation before and 
after the installation of wind shields as early observations are sparse. The climate 
indicator is produced with the EOF method, where the total precipitation of the 
entire network over the period from 1880 is estimated by combining the spatial 
signal of a period of complete coverage with the temporal signal of the available 
observations. The undercatch due to missing wind shields might therefore be 
indirectly compensated for to some extent in this product.   

On the question whether the historical transition from the 1 000 cm2-mouth 
gauges to the modern gauges has influenced the climatological precipitation 
series, the results are somewhat ambiguous. The test series in Norrköping show 
no or small deviations between the shielded historical gauge and the neighboring 



216 

modern gauge (automatic), while the Katterjåkk test series show quite large 
deviations between the modern and historical observations, and the linear 
regression models are also afflicted with large uncertainties.  

8. Conclusion 

The wind shield effect, i.e., larger observed precipitation sums due to the inclusion 
of a wind shield, is larger for the open site (Katterjåkk) than for the quite well 
shielded site (Norrköping), and larger for snow than for rain. The wind shield 
effect was found to be 7% for Norrköping and 16% for Katterjåkk for snow 
compared to 1% and 2% for rain, respectively.  

The undercatch of the shielded historical gauges compared to the modern 
gauges is also larger for snow (up to 50%) than for rain (0–8%). There are larger 
differences between the methods in Katterjåkk than in Norrköping. This is 
probably partly due to the considerable differences in local terrain between the 
test site and the automatic weather station, partly due to the more windswept and 
more snowy conditions in Katterjåkk.  

The mean average error (MAE) of linear regression models (i.e., how 
suitable it is to apply correction factors derived from simple linear models to the 
data) are smallest between the historical gauges, especially for the Norrköping 
series. The uncertainties are larger for snow and sleet than for rain. The most 
closely placed modern gauge relative to the historical gauges (automatic gauge in 
Norrköping, manual gauge in Katterjåkk) gives the most similar precipitation 
sums, suggesting that micrometeorology is more important than the observation 
method. 

Wind speeds observed at the respective automatic weather station show no 
simple relationship on the undercatch of the historical gauges. 

The wind shield effect is larger and varies more in the winter months than in 
the summer months, especially for the Norrköping observations. For the 
Katterjåkk observations, the month-to-month variations of the wind shield effect 
are difficult to interpret. 

The estimated network-wide undercatch due to missing wind shields in 
historical observation is smaller than the total difference in precipitation between 
periods without and with wind shields. The study indicates that the installation of 
wind shields in the late 19th century and early 20th century is probably not the 
main contribution to the increasing trend in precipitation in this period. 

From the results of the study, it cannot be concluded that the transition from 
historical to modern observations method have had an important influence on the 
observational time series.  
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Abstract— The earlier versions of our method MASH (Multiple Analysis of Series for 
Homogenization; Szentimrey) were developed for homogenization of the daily and monthly 
data series in the mean, i.e., the first order moment. The software MASH was developed as 
an interactive automatic, artificial intelligence (AI) system that simulates the human 
intelligence and mimics the human analysis on the basis of advanced mathematics. This 
year we finished the new version MASHv4.01 that is able to homogenize also the standard 
deviation, i.e., the second order moment. The problem of standard deviation is related to 
the monthly and daily data series homogenization. 

Key-words: climate data series, homogenization, mathematical formulation, normal 
distribution, adjustment of standard deviation, AI system, MASH, MISH  

1. Introduction

In essence, the theme of homogenization can be divided into two subgroups, such 
as monthly and daily data series homogenization. These subjects are in strong 
connection with each other of course, for example the monthly results can be used 
for the homogenization of daily data. In the practice, the monthly series are 
homogenized in the mean only, while there exist some trials to homogenize the 
daily series also in higher order moments. These procedures are based on a 
popular assumption that is the adjustment of mean is sufficient for monthly series, 
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and the adjustment of higher order moments is necessary only in the case of daily 
data series. In general, it is tacitly assumed that the averaging is capable to filter 
out the inhomogeneity in the higher order moments. However, this assumption is 
false, since it can be proved if there is a common inhomogeneity in the standard 
deviation of daily data then we have the same inhomogeneity in the monthly data. 
Therefore, we developed a mathematical procedure for the homogenization of 
mean and standard deviation together. This developed procedure was 
incorporated into our new software version MASHv4.01 (Multiple Analysis of 
Series for Homogenization; Szentimrey, 2023b), which is based on the 
examination of different type of monthly series, and the monthly results are 
applied for the homogenization of daily series. We remark if the data are normally 
distributed (e.g., mean temperature) then the homogenization of mean and 
standard deviation is sufficient, since in case of normal distribution if the first two 
moments are homogenous then the higher order moments are also homogeneous. 
The most important novelty of this paper is the methodology for adjusting the 
mean and standard deviation together, as detailed in Sections 5.3 and 5.4. 
However, first we need to review the mathematical, methodological background. 

As for the MASH as an artificial intelligence system, it is not just a 
“buzzword", as MASH has been developed along these lines for many years. To 
illustrate this, here is a quote from the proceedings of the 4th Homogenization 
Seminar (Szentimrey, 2004):  

“Programmed Statistical Procedure (Software: MASHv2.03) 
EXAMPLE 
Let us assume that there is a difficult stochastic problem. 
In case of having relatively few statistical information: 

– an intelligent human is possibly able to solve the problem, but it is time-
consuming, 

– the solution of the problem cannot be programmed. 
In case of increasing the amount of statistical information: 

– one is unable to discuss and evaluate all the information, 
– but then the solution of the problem can be programmed (as in chess expert 

systems).  
AIM, REQUIREMENT 

– Development of mathematical methodology in order to increase the amount  
of statistical information. 

– Development of algorithms for optimal using of both the statistical and the 
metadata information.”  
In essence, the Deep Blue chess expert system, which defeated Garry 

Kasparov in 1997, motivated the development of MASH. 
In our conception, the meteorological questions and topics cannot be treated 

separately. Therefore, we present a block diagram (Fig. 1) to illustrate the possible 



221 

connection between various important meteorological topics. The software 
MASH and MISH (Meteorological Interpolation based on Surface Homogenized 
Data Basis; Szentimrey and Bihari, 2014) were developed by us. These software 
were applied also in the CARPATCLIM project (Szentimrey et al., 2012a,b; 
Lakatos et al., 2013). The paper of Izsák et al. (2022) presents another application 
to create a representative database for Hungary. 

 

 
Fig. 1. Block diagram for the possible connection, between various basic meteorological topics 
and systems. 
 
 
 
Finally, last but not least, in Section 7 we reflect to some incorrect sentences 

about MASH from a book. 
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2. Mathematical formulation of climate data homogenization 

Unfortunately, the exact theoretical, mathematical formulation of the problem of 
homogenization is neglected at the meteorological studies in general. Therefore, 
we try to formulate this problem in accordance with the mathematical 
conventions. First we emphasize that the homogenization is a distribution problem 
and not a regression one (Szentimrey, 2013). 

2.1. General mathematical formulation 

Notation 
 
Let us assume we have daily or monthly climate data series: ( ) ( = 1,2, . . , ):  candidate time series of the new observing system. ( ) ( = 1,2, . . , ):  candidate time series of the old observing system. 1 < : changepoint, series ( ) ( = 1,2, . . , ) can be used before  
and series ( ) ( = + 1, . . , ) can be used after the changepoint. 
 
The appropriate theoretical cumulative distribution functions (CDF) are: 
 , ( ) = ( ( ) < )  ,   , ( ) = ( ( ) < )   ( , ) , = 1,2, . . ,  
 
It is very important to remark that as a consequence of some natural changes - e.g. 
annual cycle, climate change - the series of distribution functions , ( ), , ( ) ( = 1,2, . . , ) may change in time! In the statistical climatology the climate 
change is equivalent with the changing probability of the meteorological events. 
The inhomogeneity of data series can be defined on the basis of the distribution 
functions. 
 
Definition 1 
 
The merged series ( ) ( = 1,2, . . , ), ( ) ( = + 1, . . , ) is 
inhomogeneous, if the identity of the distribution functions , ( ) , ( ) ( = 1,2, . . , ) is not true. 
 
Definition 2 
 
The aim of the homogenization is the adjustment or correction of values ( ) ( = 1,2, . . , ) in order to have the adjusted values , ( ) ( = 1,2, . . , ) with 
the same distribution as the elements of series ( ) ( = 1,2, . . , ) have, i.e.: 
 P , ( ) < = P( ( ) < ) = , ( )    ( , ), = 1,2, . . , .  (1) 
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This definition means the equality in distribution, i.e.: , ( ) = ( ) ( = 1,2, . . , ). ("d over =", simply means that the two distribution functions are 
the same.) 
 
Theorem 1 
 
Let us assume about the random variables ,  and their distribution functions ( ), ( ), that , = 1 and ( ) is a strictly increasing 
continuous function on the interval ,  ( = 1,2). Then applying the transfer 
function , = ( )  we obtain that the variable ,  has the same 
distribution as , i.e: P , < = P( < ) = ( ). 
 
Definition 3 
 
Transfer function: , , ( )  and quantile function: , ( ). 
Theoretical formulation of homogenization of ( ) ( = 1,2, . . , ): , ( ) = , , ( ( ))  , then  P , ( ) < = , ( ). 
 
Remark 
 
The basis of the Quantile Matching methods can be integrated into the general 
theory. However, these methods developed in practice mainly for daily data are 
very weak empiric methods. 
 
2.2 Mathematical formulation for normal distribution 
 
The homogenization problem is very complicated in the general case, however in 
the case of normal distribution, a much simpler mathematical formula can be 
obtained. We emphasize that the normal distribution is a special case, but it is a 
basic one in mathematical statistics as well as in the meteorology. For example, 
the normal distribution model can be accepted for temperature variables in 
general. 
 
Theorem 2 
 
Let us assume the elements of data series ( ), ( ) are normally distributed, 
that is, ( ) ( ( ), ( )) ,   ( ) ( ( ), ( ))    ( = 1,2, . . , ), 
where E( ( )) = ( ), E( ( )) = ( ) are the means or expected values and  D( ( )) = ( ), D( ( )) = ( ) are the standard deviations.   
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Then the transfer formula of homogenization: 
 , ( ) = , , ( ( )) = ( )( ) ( ( ) ( )) + ( )( = 1,2, . . , ) (2) 
 
In case of normal distribution, we have a much simpler transfer formula for 
adjustment than the general form , ( ) = , , ( ( ))  ( = 1,2, . . , ). 
This simple linear formula means that, if the data series have normal distribution, 
it is sufficient to homogenize the means (E) and standard deviations (D) only that 
is equivalent with the homogenization of the first two moments. We emphasize 
that the normal distribution is a basic model in the mathematical statistics as well 
as in the meteorology, and there is no “tail distribution” problem (Szentimrey, 
2023a) for this important distribution according to the Theorem 2! For normal 
distribution, if the means and standard deviations are homogenous then the higher 
order moments are also homogeneous, and there is not any inhomogeneity in the 
tails of the distributions.  

3. Relation of daily and monthly data homogenization  

The monthly and daily data series homogenization are in strong connection with 
each other of course, for example the monthly results can be used for the 
homogenization of daily data. 
If we have daily data series, the general way of homogenization is 

– calculation of monthly series, 
– homogenization of monthly series taking advantage of the larger signal to 

noise ratio, 
– homogenization of daily series using the detected monthly inhomogeneities. 

So we have the question: how can we use the valuable information of detected 
monthly inhomogeneities for the daily data homogenization?  

4. Methodology for homogenization of monthly series  

This section is an overview of some various theoretical aspects of monthly 
series homogenization (Szentimrey, 1999, 2008, 2021, 2023a,b; Venema et al., 
2012). The aim of these homogenization procedures is to detect the 
inhomogeneities of monthly series and to adjust the series. In connection with 
such homogenization methods, we have to give solutions for the following 
mathematical problems: relative models, statistical spatiotemporal modeling of 
the series, methodology for comparison of series, breakpoint (changepoint), and 
outlier detection, methodology for adjustment of series, quality control 
procedures, missing data completion, usage of metadata, relation of daily and 
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monthly homogenization, manual versus automatic methods, evaluation of 
methods (theoretical, benchmark validation). The following Sections 4.1–4.2 are 
related to the Chapter 5 of the WMO Guidelines on Homogenization (WMO, 
2020). 

4.1. General structure of the relative spatiotemporal models 

Relative methods can be applied if there are more station data series given, which 
can be compared mutually. In this case, the statistical spatiotemporal modeling of 
the series is a basic question. The adequate comparison, breakpoint detection, and 
adjustment procedures depend on the chosen statistical model. Depending on the 
climate elements, additive or multiplicative models are applied. 

4.1.1. The additive spatiotemporal model 

This model is based on the normal distribution (Section 2.2) and it can be used if 
the data series are quasi normally distributed (e.g., temperature). For this model 
we assume inhomogeneity of mean (E), i.e., expected value.  

In case of relative methods, a general form of additive model for more 
monthly series belonging to the same month in a small climate region can be 
written as follows (WMO, 2020): ( ) = ( ) + + ( ) + ( )     ( = 1,2, … ,  ;  = 1,2, … . , ) , (3) 

where ( ) is the common and unknown climate change signal,  are the spatial 
expected values, ( ) are the inhomogeneity signals, and ( ) are normal white 
noise series.  
The type of inhomogeneity ( ) is in general a step-like function with unknown 
breakpoints  and artificial shifts ( ) ( + 1) 0. The normal 
distributed vector variables ( ) = [ ( ), . . , ( )] ( , )( = 1, . . . , ) are 
totally independent in time. The spatial covariance matrix  describes the spatial 
structure of the series, which is important for comparison of series. 

4.1.2. The multiplicative spatiotemporal model 

If the data series are quasi lognormal distributed (e.g., precipitation) then the 
multiplicative model can be used. According to this model, the monthly series 
belonging to the same month in a small climate region can be written as follows: 

( ) = ( ) ( ) ( )   ( = 1,2, … ,  ;  = 1,2, … . , ) .  (4) 

This multiplicative model can be transformed into the additive one by certain 
logarithmic procedure, where the little values near zero are increased slightly 
before logarithmization. Therefore, the homogenization methodology 
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(Section 4.2) developed for additive model can be used with some modification 
also for the multiplicative model.  

4.2. Methodological questions for additive spatiotemporal model 

4.2.1. Methodology for comparison of series  

The problem of comparison of series is related to the following questions: 
reference series creation, difference series constitution, multiple comparisons of 
series, etc. This topic is very important for detection as well as for adjustment, 
because the efficient series comparison can increase both the significance and the 
power. The development of efficient comparison methods can be based on the 
examination of the spatial covariance structure of data series. The examined series ( )  have to be taken as candidate and reference series alike, furthermore, the 
homogeneity of the reference series is not assumed!  

4.2.2. Methodology for breakpoint (changepoint) detection 

One of the basic tasks of the homogenization is the examination of the difference 
series in order to detect the breakpoints and to attribute the appropriate ones for 
the candidate series.  

The more sophisticated multiple breakpoints detection procedures were 
developed for joint detection of the breakpoints. There may be different principles 
of the detection methods that are classical ways in the mathematical statistics. 
Multiple breakpoints detection procedures for difference series are as follows. 

a) Bayesian approach (model selection, segmentation), penalized likelihood 
methods:  
PRODIGE (Caussinus and Mestre, 2004), HOMER (Mestre et al., 2013), 
ACMANT (Adapted Caussinus-Mestre Algorithm for Networks of 
Temperature series; Domonkos, 2011). 

b) Multiple breakpoints detection based on test of hypothesis and confidence 
intervals for the breakpoints, that make possible, automatic use of metadata: 
MASH (Szentimrey, 1999, 2023b). 

4.2.3. Methodology for adjustment of series 

Beside the detection, another basic task of the homogenization is the adjustment 
of series. Calculation of the adjustment factors can be based on the examination 
of difference series for estimation of shifts at the detected breakpoints. In general, 
the methods use point estimation for the shifts at the detected breakpoints.  

There are methods that use the standard least squares technique after 
breakpoint detection procedure for joint estimation of the shifts of all the 
examined series, for example the methods PRODIGE, HOMER, ACMANT. 
Probably the generalized least squares estimation technique based on spatial 
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covariance matrix would be more efficient, and it would be equivalent with the 
maximum likelihood estimation for the shifts in the case of normal distribution. 

Another way is that the calculation of the adjustment factors is based on some 
confidence intervals given for the shifts at the detected breakpoints, as in the 
method MASH. The confidence intervals given for the breakpoints and shifts 
make the automatic use of metadata possible. 

5. Methodology for homogenization of daily series 

The basic question is what would be the appropriate, exact methodology for the 
daily data homogenization. According to Sections 3 and 4, how can we use the 
valuable information of detected monthly inhomogeneities for the daily data 
homogenization (Szentimrey, 2008, 2013, 2017, 2021, 2023a,b)? How can we use 
the methodology developed for monthly series? 

5.1. A popular procedure for daily data, e.g., the variable correction methods 

The typical steps of the procedure are as follows. 
1. Calculation of monthly series from daily series.    
2. Homogenization of monthly series:    

Breakpoints detection, adjustment in the first order moment (mean (E)).   
Assumption: homogeneity of higher order moments (e.g., standard deviation 
(D)). 

3. Homogenization of daily series:    
A trial to homogenize also the higher order moments.   
(Quantile matching (Wang and Feng, 2013), spline methods (Mestre et al., 
2011)) 

The used monthly information are only the detected breakpoints. 
 
However, the following questions are arising at this procedure: 

– Is it an adequate model that we have inhomogeneity in higher moments only 
at daily series but not at monthly ones? Can this model be accepted according 
to the probability theory? No, it can be proved, if there is a common 
inhomogeneity in the standard deviation (D) of daily data, we may have the 
same inhomogeneity in monthly data. 

– Why are the monthly adjustment factors not used for daily homogenization? 
It seems to lose some valuable information obtained during the monthly 
homogenization. 
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5.2. Problem of inhomogeneity of the standard deviation 

According to the former assumption, which is popular in practice, the adjustment 
in mean (E) is sufficient for monthly and annual series, and the adjustment of 
higher order moments is necessary only in the case of daily data series. In general, 
it is tacitly assumed that the averaging is capable to filter out the inhomogeneities 
in the higher order moments. However, this assumption is false, it can be proved, 
if there is a common inhomogeneity in the standard deviation (D) of daily data, 
we may have the same inhomogeneity in monthly data. 

Theorem 3 

Let us assume ( ) ( = 1, . . ,30) are daily data and the monthly mean is = ( ).

The monthly variable for examination of the inhomogeneity of standard deviation 
(D) is

= ( ( ) ( 1))  . (5) 

Let us introduce some inhomogeneity of the mean (E) and the standard deviation 
(D) for the daily data by a linear function:( ) = ( ) E( ( )) + E( ( )) +         ( = 1, . . ,30). 

Then the expected values and the standard deviations are: E( ( )) = E( ( )) +  ,  D( ( )) = D( ( ))    ( = 1, . . ,30). 

The appropriate monthly variables are:    = ( ), = ( ( ) ( 1)) . 

i) Then the monthly mean is also inhomogeneous in mean (E) and standard
deviation (D) with the same measure like the daily values:E( ) = E( ) +     and     D( ) = D( ) .

ii) Moreover, variables ,  can be used to estimate the inhomogeneity  of
the standard deviation (D):  E( ) = E( )
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5.3. The alternative procedure for daily and monthly data developed in MASH  

We suggest an alternative procedure to homogenize both the daily and the 
monthly series.  
The steps of the procedure in case of quasi normal distribution (e.g., temperature) 
are as follows.  
First we examine both the monthly mean series ( ) for the inhomogeneity of 
expected values (E) and the monthly series ( ) derived to Theorem 3 for the 
inhomogeneity of standard deviations (D). The proper inhomogeneity 
characteristics are the difference of the expected values and the ratio of the 
standard deviations. Therefore, we apply different models for these parameters. 

1. Homogenization of monthly series ( ), ( ).          
Homogenization of series ( ) by the multiplicative model (4.1.2): 
breakpoints detection, estimation of inhomogeneity of standard deviation 
(D). 
Adjustment of standard deviation of series ( ) is detailed in Section 5.4. 
Homogenization of adjusted series ( ) by additive model (4.1.1): 
breakpoints detection, estimation of the inhomogeneity of mean (E). It is 
detailed in Section 5.4. 
Assumption: after homogenization of E, D, there is no inhomogeneity in the 
higher order (>2) moments of adjusted series ( ). This assumption is 
always right in case of normal distribution according to Theorem 2. 

2. Homogenization of daily series.    
Homogenization of mean (E) and standard deviation (D) on the basis of the 
monthly results. The used monthly information are the breakpoints and the 
monthly adjustments of the mean (E) and standard deviation (D). The 
adjustment is based on the transfer formula (Eq (2)) considering Theorem 3. 
If the daily data are normally distributed then after homogenization of E, D 
there is no inhomogeneity in the higher order moments according to Theorem 
2. 

5.4. Adjustment of monthly mean series, daily series, transfer formula 

The adjustment of monthly mean series ( ) in mean (E) and standard deviation 
(D) is based on the transfer formula according to Eq. (2), i.e.: 
 , ( ) = ( )( ) ( ( ) ( )) + ( )     ( = 1,2, . . , ) .   (6)  
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5.4.1. Adjustment of 2 ( )Y t  in standard deviation (D)  

The theoretical formula is , ( ) = ( )( ) ( ( ) ( )) + ( )  ( = 1,2, . . , )  but ( ) ( = 1,2, . . , ) are unknown. 
Therefore, the applied formula is , ( ) = ( )( ) ( ( ) ) + , 
where  is the mean value of ( ) ( = 1,2, . . , ).  can be estimated by 
mean . 
Inhomogeneity of standard deviation ( ) = ( )( ) can be estimated by 
homogenizing the monthly standard deviation series ( ) using the multiplicative 
model.  
The adjustment of ( ) is , ( ) = ( )( ) , ( ),  

where , ( ) = ( )( ) 1 . 

5.4.2. Adjustment of , ( ) in mean (E)  

According to Eq. (6), the inhomogeneity of , ( ) in mean is , ( ) =E , ( ) ( ), and it can be estimated by homogenizing the monthly 
mean series , ( ) using additive model.  , ( ) = ( )( ) 1 ( ( ) ) + ( ) ( ) . 
 

5.4.3. Summary of the adjustment of 2 ( )Y t  and the daily data series 

The adjustment of )(2 tY  in mean (E) and standard deviation (D) can be written in 
the following linear function form: , ( ) = ( )( ) ( ), where ( ) = , ( ) + , ( ). 
For homogenization of daily data series in mean (E) and standard deviation (D) 
we also use this linear function form, in accordance with the Theorem 3. In this 
case the estimated inhomogeneity values ( ), ( ) are smoothed, as it was 
developed in MASH for homogenization of daily data (Szentimrey, 2008, 2013). 

6. Summary of software MASH  

6.1. General comments 

The new version MASHv4.01 (Multiple Analysis of Series for Homogenization; 
Szentimrey 1999, 2004, 2008, 2013, 2017, 2021, 2023a,b,c) has been developed 
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for homogenization of daily and monthly series. The most important novelty of 
this version is the homogenization in standard deviation (D) beside the mean (E), 
see Sections 5.3, 5.4. The basic concept of the MASH system is first to 
homogenize the monthly series derived from the daily series, and then to 
homogenize the daily series based on the detected monthly inhomogeneities. The 
procedures depend on the distribution of climate elements, and additive or 
multiplicative models can be used. 

6.1.1. Quasi normal distribution (e.g., temperature) 

Beside the monthly mean series, another type of monthly series are also derived 
to estimate the inhomogeneity of standard deviation (D). These latter series can 
be homogenized by the multiplicative model (4.1.2), and the monthly mean series 
can be adjusted with the estimated inhomogeneity in standard deviation (D). The 
adjusted monthly mean series can be homogenized in mean (E) by the additive 
model (4.1.1). 

6.1.2. Quasi lognormal distribution (e.g., precipitation) 

Monthly mean or sum series can be homogenized by the multiplicative model 
(4.1.2).  
The multiplicative model can be transformed into the additive one (4.1.1) by 
certain logarithmic procedures. 

6.2. The most important features of the MASH system 

Homogenization of monthly series:  
– Relative homogeneity test procedure.
– Step by step iteration procedure: the role of series (candidate, reference)

changes step by step in the course of the procedure.
– Interactive automatic, artificial intelligence (AI) system (see Section 6.3).
– Additive or multiplicative model can be used depending on the distribution.
– Including automatic quality control and missing data completion.
– Providing the homogeneity of the seasonal and annual series as well.
– Metadata (probable dates of breakpoints) can be used automatically.
– The homogenization results and the metadata can be verified.

Homogenization of daily series: 
– Based on the detected monthly inhomogeneities (E, D).
– Including automatic quality control and missing data completion for daily

data.
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The elder version of MISH and MASH software can be downloaded from: 
http://www.met.hu/en/omsz/rendezvenyek/homogenization_and_interpolation/software/ 
We plan to share the new version MASHv4.01 this year (2023). 

6.3. Some verification results for homogenization in mean (E) and standard 
deviation (D)  

The aim of MASH is not the full automation, and we also are sceptical in such an 
aspect. Our intention was to develop a flexible, interactive automatic, artificial 
intelligence (AI) system that simulates the human intelligence and mimics the 
human analysis on the basis of advanced mathematics. The mechanic, labor-
intensive sub-procedures are fully automated, moreover, the operating process can 
be controlled simply, and the accidental mistakes can be corrected interactively. 
The basic idea of this concept is controlling the results via the verification tables 
generated automatically during the automatic procedures (Szentimrey, 2004, 
2023b). Interactive decisions also can be made based on the analysis of the 
verification tables. 

Some examples for verification tables related to the inhomogeneities are 
presented in Fig. 2. In the example, 15 Hungarian July mean temperature series 
(1901–2015) were homogenized by MASH in mean (E) and standard deviation 
(D). The estimated inhomogeneities can be characterized by the following 
statistics. 

i) For mean (E, additive model):  = | ( )| , where   ( ) = ( ) + ( ) ( = 1, . . . , ), 
and  ( ), ( ) are the means before and after homogenization.   

ii) For standard deviation (D, multiplicative model):  = | ( ) 1|, where ( ) = ( ) ( )  ( = 1, . . . , ), and ( ), ( ) are the standard deviations before and after 
homogenization.   

These IHE and IHD statistics can be seen in Fig. 2. 
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Fig. 2. Characterization of inhomogeneities for mean (E) and standard deviation (D). 

 

7. Incorrect sentences about MASH from a book 

During the last 11th Seminar for Homogenization, I was obliged to make some 
comments to the following book of Elsevier:  
P. Domonkos, R. Tóth and L. Nyitrai, 2022: “Climate observations: data quality 
control and time series homogenization” (Domonkos et al., 2022). 
My comments published in the seminar proceedings (Szentimrey, 2023c) were as 
follows. 
“The last sentence is on page 200 is:  “MASHv3 is better than MASHv4.”  Sorry, 
but it is an absolutely misleading untrue statement! Publication of the book was 
in 2022 while publication of MASHv4 was later in 2023. The authors could not 
know MASHv4!   
In Section (c) “Novelties in MASHv4”, on page 200 is:”… the proposed algorithm 
easily detects false breaks of the standard deviation around the breakpoints for the 
means. It is because the empirical standard deviation is elevated for periods 
including shifts in the means.” It is also an incorrect statement! We do not use the 
empirical standard deviation at all! 
There is a funny personal note about me as the creator of MASH on page 198: 
“The creator often chose unique mathematical solutions differing both from the 
traditional tools of climate data homogenization and from those suggested by 
other statisticians.” Yes, because I am a mathematician! 
Conclusion: The credibility of the content of this book is doubtful for me!” 
After the seminar, in the same proceedings, Peter Domonkos responded to my 
objections and he accepted them (Domonkos, 2023). 
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Abstract— Spatial kriging interpolation has been a widely popular geostatistical method 
for decades, and it is commonly used to predict both gridded and missing climatic variables. 
Climate data is typically monitored across a variety of timescales, from daily measurements 
to thirty-year periods, known as long-term averages (LTAs). LTAs can be constructed from 
daily, monthly, or annual measurements so long as any missing values in the data are 
infilled first. Although spatial kriging is an available method for the prediction of missing 
data, it is limited to a single moment in time for each imputation. Not only can missing 
values only be predicted with observations measured at the same instance in time, but the 
entire imputation process must be repeated up to the number of timesteps in which missing 
data is present. This study investigates the imputation performance of spatiotemporal 
regression kriging, an extension of spatial regression kriging which simultaneously 
accounts for data across both space and time. Hence, missing data is predicted using 
observations from other points in time, and only a single imputation process is required for 
the entire data set. 

Spatiotemporal regression kriging has been evaluated against a variety of 
geostatistical methods, including spatial kriging, for the imputation of monthly rainfall 
totals for the Republic of Ireland. Across all tests, the spatiotemporal methods presented 
have outperformed any purely spatial methods considered. Furthermore, three different 
regression methods were considered when de-trending the data before interpolation. Of 
those tested, generalized least squares (GLS) was shown to provide the best results, 
followed by elastic-net regularization when GLS proved computationally unavailable. 
Finally, the data set has been infilled using the best performing imputation method, and 
precipitation LTAs are presented for the Republic of Ireland from 1981–2010. 
 
Key-words: spatiotemporal kriging, rainfall, long-term averages, missing data, imputation, 
kriging, Ireland, elastic-net 
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1. Introduction 

Climate normals or LTAs are the standard measure by which the climate is 
described, providing the average climatic conditions experienced by a region over 
a thirty-year period. A thorough understanding of precipitation is crucial to 
numerous endeavours in Ireland, ranging from agriculture to flood risk 
management (Charlton et al., 2006; Naughton et al., 2017). During the measuring 
period, missing data entries commonly arise for rain gauge stations. There are 
various potential causes for this, such as stations being opened, closed, or moved, 
malfunctioning equipment, or insufficient observations taken by the station 
monitor. Missingness present in the data set must first be addressed before 
continuing with any climatological or hydrological research, including the 
production of LTAs. This creates the need for robust and sophisticated methods 
which impute missing entries as accurately as possible in order to minimize bias 
caused by missingness in future analysis. In this study, the performance of 
spatiotemporal regression kriging is explored for the purpose of imputing missing 
monthly precipitation totals. Elastic-net regularization (Zou and Hastie, 2005) is 
also investigated as a potential model to de-trend the data for regression kriging. 

Kriging is a popular geostatistical method for predicting variables of interest 
over a spatial field. Developed originally by Matheron (1963), it is widely applied 
in a variety of fields such as environmental science, mining, and remote sensing 
(Tavares et al., 2008; Mondal et al., 2017). The method interpolates values as 
weighted averages of observations from nearby stations, where weights are 
calculated according to the estimated variance between sample stations and the 
target point. Numerous extensions of kriging have been explored, and popular 
examples include universal kriging, cokriging, and Bayesian kriging (Handcock 
and Stein, 1993; Myers, 1982). Universal kriging is a particularly widespread 
method that includes a regression of the target variable against auxiliary variables 
present in the data (elevation, latitude, longitude, etc.). As kriging assumes a 
second order stationarity across the field, it is necessary to remove any trends 
initially present in the data. Hence, the popularity of universal kriging when 
kriging interpolation is employed with climate data. Small variations to universal 
kriging exist, namely, regression kriging and kriging with external drift. These 
three methods differ slightly in their implementation, but are all generally the 
same technique. Regression kriging divides the approach into a two-step process, 
where trends in the data are first removed by regression and the remaining 
residuals are interpolated by ordinary kriging. The regression method achieved by 
universal kriging is known as generalized least squares (GLS), and this approach 
is theoretically optimal for a linear estimator. However, the modular approach of 
regression kriging allows one to consider alternative regression methods such as 
elastic-net regularization or principle component regression (Zou and Hastie, 
2005; Jolliffe, 1982). 
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Originally proposed as a purely spatial method, kriging has been extended to 
spatiotemporal contexts. Known as spatiotemporal kriging, the distance between 
points across a temporal field is considered alongside spatial distance, such that 
interpolation can be achieved using a data set not bound to a single point in time 
(Montero et al., 2015). This approach lends itself particularly well to imputation, 
as missing observations can have nearby temporal neighbors either before or after 
the target point which are observed from the same station. Additionally, the entire 
data set can be imputed at once, removing the need to undergo a separate kriging 
procedure for each time step. Spatiotemporal kriging requires the production of 
more sophisticated spatiotemporal covariance models (Gr ler et al., 2016), but 
otherwise it is formulated similarly to spatial kriging. Spatiotemporal kriging has 
been applied successfully in many contexts. For example, Hengl (2012) predicted 
daily temperatures through spatiotemporal regression kriging with a sum-metric 
variogram model. The remainder of this study is reported as follows: First, a short 
overview of the data is provided. Then, the methodology behind both elastic-net 
regularization and spatiotemporal regression kriging is outlined. The results 
comprise of the imputation performance of all considered methods, followed by 
a brief discussion.  All research has been implemented using the R programming 
language (R Core Team, 2021), with a particular emphasis on the glmnet 
(Friedman et al., 2010) and gstat (Gr ler et al., 2016) packages. 

2. Methods 

The island of Ireland has a temperate oceanic climate with an abundance of 
rainfall throughout the year (Lennon, 2015). Precipitation is monitored by Met 
Éireann, the Irish meteorological service, using over 1100 rain gauge stations 
located around the country. The considered data set consists of monthly 
precipitation totals from 474 stations over a thirty-year monitoring period of 
1981–2010. At least 50% of data-entries from these stations are recorded as non-
missing. Additionally, the data set has been considered at different levels of 
completeness, i.e., only considering stations with at least 70% (365 stations), 50% 
(474 stations), or 30% (679 stations) of their entries recorded non-missing, 
respectively. The rain gauge distribution of the monitoring network at station 
completeness cutoffs of 100%, 70%, and 30% are displayed in Fig. 1. 
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Fig. 1. Met Éireann precipitation monitoring network for the Republic of Ireland from 
1981–2010. The network is presented at different completeness cutoffs (100%, 70%, and 
30%, respectively). 

 
 

 
 
 

Typically, when geospatial climate data is interpolated, any trend present in 
the data is removed. This is a necessity for regression kriging as the ordinary 
kriging step assumes a second-order stationarity with no external trend or "drift". 
Drift is described as the continuous change of the underlying target variable. It is 
modeled as a function of available predictor variables, e.g., longitude, latitude, 
elevation, etc., and how changes in these variables correspond with changes in the 
target. For linear effects, this function is simply expressed as the well-known 
linear model:  . Removing drift is a fairly straightforward task, and 
can be done in a variety of ways. Ordinary least squares (OLS) is an elementary 
option, where regression parameters are determined according to the estimator: 

. However, OLS relies on the assumption that the underlying 
model residuals are independent and uncorrelated. Upon inspection of the 
variogram of residuals after regression is conducted (Fig. 2), this is clearly not the 
case. Alternatively, GLS accounts for auto-correlation between residuals by 
including the variance-covariance matrix of the residuals, , in the estimator:  

. In combination with kriging, GLS gives the best 
linear unbiased estimator (BLUP). Besides these two unbiased regression 
techniques, a third method known as elastic-net regularization has also been 
considered.  



241 

 
Fig. 2. Left: Empirical spatiotemporal variogram of residuals. Right: Fitted sum-metric 
variogram model consisting of spatial, temporal, and spatiotemporal Matérn structures. 

 

 

 
 
Developed by Zou and Hastie (2005), elastic-net regularization is a 

technique designed to address high-dimensionality and/or highly correlated 
variables in a regression context. The objective function of elastic-net differs from 
that of OLS by the addition of a regularization penalty, , i.e., 

 
 min, . (1) 

 
The elastic-net penalty is in fact a convex sum of penalties from two other 

methods, lasso regression and ridge regression,  and , 
respectively. Both penalties are designed to shrink the regression coefficients, , 
present in the standard linear model by constraining either the L1-norm or L2-norm 
of all  below a constant, i.e., | |  for lasso regression and 

 for ridge regression. The tuning parameter, , determines 
the degree of shrinkage that is applied to the regression parameters. It is normally 
preselected before regression or can be fit by 10-fold cross validation using the 
cv.glmnet function available in R package, glmnet (Friedman et al., 2010). 
By considering a linear combination of both  and  penalties, the elastic-net 
penalty is expressed as follows: 

 
 1 | | . (2) 
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An additional parameter, 1, 0 , is introduced which describes how 
closely the elastic-net penalty is to lasso ( = 1) or ridge ( = 0) regression. 
Elastic-net boasts the advantages of feature selection (from lasso) and robustness 
in the presence of multicollinearity (from ridge). Table 1 describes the covariates 
that were considered in every regression model implemented during this study. 
As normally distributed data is desirable when using regression prediction 
methods, a square-root transformation has also been applied to the initial data 
before imputation. This transformation is reversed at the last step in imputation 
and has shown to greatly improve the imputation results. 

Kriging predicts values by a weighted average method, = ( ), 
where weights, , are assigned to nearby observations according to their 
spatiotemporal relationship with the target. A Gaussian random field, , over the 
spatial and temporal domains,  and , is assumed, and each value is observed at a 
distinct point in space and time. That is, ( , ) is the total monthly precipitation 
measured by the station located at  for the month, . The target variable is considered 
as a sum of deterministic components, ( , ), and random components, ( , ): 

 
 ( , ) = ( , )  +  ( , ). (3) 

 
The central idea of kriging is the assumption that  is second-order stationary 

so long as the deterministic component, ( , ), is constant. Here is why any drift 
present in the data must initially be removed before kriging. Once second-order 
stationarity is achieved, the covariance between any pair of observations does not 
depend on their positions, but only on the distance between them. This allows the 
introduction of the variogram which models the semivariance of point pairs, i.e., 
the dependence between them with respect to their separation: 

 
 ( , , , ) = ( , ) ( , ) = ( , ). (4) 
   

All data entries, = ( , ), are separated both spatially, , and temporally, 
. The construction of  is done over multiple steps. An empirical variogram is 

first created from the observed data, where all available point pairs are grouped 
into bins according to their separation. The average  of each bin is calculated and 
plotted, upon which a parametric representation of  is fitted to the empirical 
variogram using the limited-memory BFGS algorithm in gstat (L-BFGS). 
Generally, the parametric form of a purely spatial variogram is as follows: 

 
 ( ) = + (1 ( )) (5) 

 
The correlation, ( ), is a monotonic decreasing function where (0) = 1 and ( ) = 0 as . Three parameters are needed to represent the variogram 

model – the nugget , the sill + , and the range  (Diggle and Giorgi, 
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2019). For Matérn covariance models, an additional parameter must be 
considered, , which is known as the "shape". 

With these parameters, various covariance models can be fit to the spatial 
empirical variogram. Popular models include the Spherical, Gaussian, 
Exponential, and Matérn models. A Matérn structure was used throughout this 
study and was found to provide the best imputation performance. Its structure 
contains a modified Bessel function of order, ( ( / )), and a Gamma function ( ). It is presented below: 

 
 ( ) = 2 ( ) ( ) ( ). (6) 

 
A variety of covariance models are available for the spatiotemporal context 

(Gr ler et al., 2016). The sum-metric structure was applied by Hengl et al. (2012) 
for daily temperature data and has been found to be similarly suitable for this 
study. The sum-metric model consists of three components, a spatial variogram ( ), a temporal variogram ( ), and a joint variogram, ( + ( ) ): 

 
 ( , ) = ( ) + ( ) +  ( + ( ) ). (7) 

 
Each component has been modeled using a Matérn correlation structure (Eqs. 

5 and 6) with their own distinct fitted parameters ( , , , and ). The third term, 
, also contains an anisotropy term, , allowing temporal separation to be scaled 

relative to an equivalent spatial distance. The anisotropy adds an additional 
parameter to the sum-metric model, bringing the number of parameters needed to be 
fit by L-BFGS to thirteen (four for each Matérn structure and ). Fig. 2 displays the 
fitted spatiotemporal variogram for the de-trended precipitation data. Notably, the 
dependency is observed to be much stronger spatially than temporally. As the data is 
expressed in monthly time steps, the weaker temporal dependency may be attributed 
to the long period of time between data entries. 

Once a variogram of the residuals has been produced and fitted, prediction 
weights, , can be calculated through the kriging system of equations. For 
ordinary kriging, the mean, ( , ), is assumed unknown, however, this can be 
relaxed by introducing the constraint that all weights add to one: = 1. The 
missing value at target point,  =  ( , ), is predicted by a weighted average 
of the = 700 nearest observations over all space and time, ,  ( ). The ordinary kriging system of equations is given by Eq. (8), 
where , ×  is an ×  matrix of the semivariances between all 
observed point pairs considered in the kriging system, and ( , ) ×  is a 
column vector of the semivariances between the target and the observed points: 
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 , × × = ( , ) ×                    = 1 (8) 

 
Inverse distance weighting (IDW) is a simple benchmark method which also 

predicts target points by weighted average. Instead of modeling a dependency 
structure like kriging however, an inverse spatial power law is assumed, and the 
corresponding weights are described as = . The imputation performance of 
three methods have been evaluated: inverse distance weighting, spatial regression 
kriging, and spatiotemporal regression kriging. Any trend present in the data 
(Table 1) has been removed prior to interpolation for all methods. Furthermore, 
three trend removal procedures were considered for spatiotemporal kriging: OLS, 
elastic-net, and GLS. When implementing GLS, the variance-covariance matrix, 

, is obtainable through the modeled theoretical variogram. This is ultimately 
achieved by an iterative process, where residuals are first obtained to produce the 
variogram, and regression is repeated using GLS and the now modeled 
dependency structure. Unfortunately for larger data sets, inversion of  proved 
computationally unattainable. Tests have been conducted on two data sets from 
1981–2010: 474 stations across the Republic of Ireland and a smaller subset of 27 
stations in Greater Dublin. Inclusion of the smaller data set allows GLS 
spatiotemporal kriging to be considered. The imputation of each method was 
evaluated under 10-fold cross-validation using three performance metrics: root 
mean squared error (RMSE), relative RMSE (RMSER), the RMSE normalized by 
the deviation of the observed data, and R2, the percentage of variance explained 
between observed ( ) and predicted values ( ): 

 = ( )
 ;    =  ;    = 1 ( )( ) . (9) 

 
 

 
 

Table 1. All covariates used when removing trends in precipitation data by regression. 

Covariate Description 

east & east2 Easting, Irish Grid TM75 (m/m2) 
north & north2 Northing, Irish Grid TM75 (m/m2) 
east × north Easting/Northing interaction (m2) 
points5 & points52 Mean elevation in 5 km radius around station (m/m2) 
exp25k Ocean cover within 25 km radius of station (%) 

t Time of observation in months from January 1981 to December 2010 
(i.e., (1, 360)) 
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3. Results 

Imputation performance is reported in Table 2. Across all three metrics (RMSE, 
RMSER, and R2), it is clear that the inclusion of a temporal component in the 
imputation method greatly benefits the prediction accuracy for both large and 
small data sets. Moreover, this improvement is shown to be consistent throughout 
the year in Fig. 3, where the spatiotemporal methods tested provide a steady 
improvement for every month. With regards to the regression method applied, 
elastic-net has shown to slightly outperform OLS in both cases, although GLS 
expectedly produces the best results when available. Notably, the choice of 
regression method has a considerably lower impact on imputation accuracy when 
compared to the introduction of spatiotemporal approaches.  
 

Table 2. 10-fold cross validation results for Republic of Ireland and Greater Dublin. For 
the 474 stations, ST-kriging with GLS was unavailable due to computational intractability 

 Republic of Ireland (474 stations) Greater Dublin (27 stations) 

Method RMSE RMSER  R2 RMSE RMSER R2 

IDW 21.21mm 30.28% 0.909 15.69 mm 29.81% 0.911 

Spatial Kriging 20.61mm 29.41% 0.914 18.13 mm 34.44% 0.884 

ST-Kriging 17.47mm 24.94% 0.938 14.05 mm 26.70% 0.929 
ST-Kriging 
ENET 17.42mm 24.86% 0.938 13.89 mm 26.39% 0.930 

ST-Kriging GLS - - - 13.80 mm 26.23% 0.931 

 
 

 
Fig. 3. Monthly RMSE calculated by 10-fold cross validation of the network with a 
completeness cutoff of 50%. Spatiotemporal methods are shown to consistently outperform 
throughout the year. 
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In addition to Table 2, further tests have been conducted where the data set 
comprises of increasingly incomplete stations. Three data sets have been tested 
where the included stations have a completeness of at least 70%, 50%, or 30%, 
respectively. The best performing method for large data sets, spatiotemporal 
kriging with elastic-net, was evaluated alongside these data sets to explore how 
the method performs against progressively sparser data. Results from Table 3 
demonstrate that the inclusion of less complete stations improves the overall 
RMSE. However, no improvement in RMSER was observed between a cutoff 
completeness of 50% and 30%. RMSER allows imputation performance to be 
compared across different data sets, a benefit which is unavailable to RMSE 
(Hengl, 2007). Thus the results indicate that the appropriate completeness cutoff 
to consider during imputation lies somewhere close to the range of 50% to 30%. 

 
 
 
 
Table 3. 10-fold cross validation results according to different completeness cutoffs. 
Imputation is achieved by spatiotemporal kriging with elastic-net. 

% Missing No. Stations RMSE (mm) RMSER (%) R2 

70% 365 17.89 25.18 0.937 

50% 474 17.42 24.86 0.938 

30% 679 17.15 24.86 0.938 

 
 

 
 
Once the data set is fully imputed, LTAs can finally be produced. Fig. 4 

demonstrates the monthly precipitation LTAs for the island of Ireland, created 
using the fully imputed data set with a 50% completeness cutoff. All missing data 
entries were first imputed by elastic-net spatiotemporal kriging, then monthly 
averages were calculated and interpolated on to a 1 km × 1 km grid. Notably from 
Fig. 1, no rain gauge stations were available for Northern Ireland in this study, 
and as such, the interpolated values are not expected to sufficiently represent the 
precipitation over this region. Overall, a mean monthly rainfall of mm is reported 
from 1981–2010, with an increase in rainfall observed in the west and southwest 
of the island, particularly during the winter months. 
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Fig. 4. Gridded long-term averages of monthly precipitation from 1981–2010 (1 km × 1 km).  

 

 

4. Conclusion 

A spatiotemporal regression kriging method has been demonstrated to show 
improved imputation capabilities when compared to its purely spatial counterpart. 
Furthermore, elastic-net regularization has shown to be a suitable regression 
method to remove any trend present in a climatic data set. Although GLS provides 
slightly better results, it is not always available when working with large data sets, 
which is typically the case in a spatiotemporal context. Given the achieved results, 
spatiotemporal kriging is presented as a viable option for the imputation of 
incomplete precipitation data sets. The small adjustment from OLS to elastic-net 
when removing trend may also be worthwhile, as improved imputation can be 
achieved for very little additional computational cost. For spatiotemporal kriging, 
however, it is noted that the increased computation is significant, even when GLS 
is not considered. The recorded computational time needed to impute for the 50% 
completeness cutoff 474 stations using spatial kriging was 29.29 seconds, far 
smaller than the 6.48 hours required for spatiotemporal kriging.  

For future research, improving the computational viability of GLS is of 
utmost concern, potentially via a likelihood-based or Bayesian approach to model 
fitting. Additionally, the entire island of Ireland may be considered by including 
data from the Northern Ireland rainfall monitoring network managed by the 
United Kingdom Meteorological Office. This is generally standard procedure in 
other climatological research from Met Éireann (Walsh, 2016), and would allow 
for a more comprehensive overview of the complete island. Spatiotemporal 
kriging may also lend itself well in the imputation for other climatic variables such 
as temperature or wind speed. Evidently, the temporal dependency is much 
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stronger amongst such variables, a property that which would allow 
spatiotemporal kriging to yield substantial improvements. However, for Ireland, 
the observation coverage of rainfall is considerably higher than many other 
variables, and the lack of sufficient data may limit the capabilities of these more 
sophisticated imputation methods. 
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Abstract— Commonly studying climate is gaining more and more space thanks to the 
expansion of the tools of statistical climatology and the development of the informatical 
background. Trend analyses of annual and seasonal mean temperature values clearly show 
that the Hungarian values are mostly in line with the global trend, and in some cases exceed 
it. Since a sufficient number of measurements are only available from the 1970s, we used 
hourly temperature values (03 UTC, 09 UTC, 15 UTC, 21 UTC) of the period 1971–2020 
for station data series in Hungary for the trend analysis. In order to make the examined 
datasets sufficiently representative, we homogenized the station data series, filled in data 
gaps, and performed quality control using the MASH software. To ensure spatial 
representativeness, we interpolated the homogenized station data onto a dense, regular grid 
network with the MISH system. In addition, we used the ANOVA method to examine the 
expected values, standard deviations assigned to the hourly values, and we analyzed on 
maps how the values within the day changed in each region over 50 years. 
 
Key-words: ANOVA, trend analysis, sub-daily temperature data, MASH software, MISH 
software, Hungary 
 

1. Introduction 

Climate change and its corresponding professional background knowledge have 
now become especially important. The examination of the past and present 
climate also plays an important role worldwide, especially with regard to 
investigations related to the process of climate change. In order to get an adequate 
picture of the detected changes, we can work with six-hourly temperature datasets. 
It is quite important that when modeling hourly values compared to daily data, we 
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had to determine the regression coefficients, since we cannot interpolate in the 
same way within a day, since the expected values differ for example at dawn and 
at noon, and it can also be seen that there is a strong stochastic relation between 
the daily and hourly values. The hourly values were homogenized, the missing 
data were filled in, and then the available values were interpolated into the points 
where no measurements were taken. The purpose of this research is to examine 
the database of four hourly values within a day to see how much they changed 
overall during the research period, i.e., between 1971–2020. We used linear trend 
analysis for this comparing the changes that took place by area between the 
databases. Moreover, we also examined the databases and their differences and 
similarities using the ANOVA methodology. 

2. Data 

Six-hourly UTC (03 UTC, 09 UTC, 15 UTC, 21 UTC) measurements were used 
for the analysis. First, we did a homogenization process by applying the MASH 
system (Szentimrey, 2017) in order to fill in all the data gaps, followed by 
interpolation. The interpolation method was done by MISH (Szentimrey and 
Bihari, 2007, 2014). In the case of 03 UTC 47, 09 UTC 49, 15 UTC 49, and 
21 UTC 55 station data series were available for this study. After the 
homogenization we interpolated the homogenized station data series to 1233 grid 
points which corresponds to 0.1° resolution (Fig. 1). Then we chose a much more 
detailed 0.5' resolution grid for interpolation to produce the trend maps. Due to 
the large number of missing data, we had to leave the very incomplete stations 
during the homogenization (Szentimrey et al., 2014a). 
 

 
Fig. 1. The geographical location of the 1233 grid points in Hungary (EPSG:4326: WGS 84). 
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3. Interpolating sub-daily values with MISH, description of the methodology 

Applying the MISH interpolation system compared to other methods used in 
climate research has a much smaller interpolation error in the interpolated data 
series, so its use is much more recommended for meteorological data compared 
to other interpolation methods (Barna et al., 2023; Izsák et al., 2023). This is due 
to the fact that in meteorology we cannot assume that there is no spatial trend, as 
the complex orography of the country means that different regions have different 
expected values. 

Fig. 2 shows the montly difference of the six-hourly temperature values from 
the daily mean, and according to that we can declare that at 09 and 15 UTC the 
values are higher than the daily mean, furthermore, for 03 UTC and 21 UTC the 
daily mean value is higher than this two hourly value during the whole year. This 
can help in the decision when determining the regression parameters for 
interpolating the sub-daily hourly values (Izsák, 2023). Below we describe the 
metodology of interpolating hourly temperature values (Szentimrey, 2019). 

 
 
 

 
Fig. 2. Monthly difference of the six-hourly temperature values from the daily mean values 
(°C). 
 
 
 
 
The following interpolation formula (additive model) is applied for the daily 

mean temperature data (Szentimrey et al., 2011, 2014b): 
 

   , (1) 
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where  (s: location) is a predictand, = 1, . . . ,  are predictors 
(observations), and the weighting factors = 1 and = 1, . . . ,  
depend on the stochastic relations, while = 0, . . . ,  are the daily spatial 
trend values (Szentimrey, 2019). 

The optimal interpolation parameters  = 1, . . . ,  minimize the root-
mean-square error, and these are known functions of the climate statistical 
parameters (Szentimrey, 2019, 2020). 

Based on the daily interpolation formula, the following formula is applied to 
the = 03, 09, 15, 21 UTC values, accepting the weighting factors: 

 

 , = , , + ,  , 
  = 03, 09, 15, 21   (2) 
 
where  , = 0, . . . ,  represents the spatial trend values for the given 
times. 

To model the ,  = 3,9,15,21   hourly spatial trend values, the 
following linear model was chosen: 

 
 , = +                        = 03, 09, 15, 21 . (3) 
 
In this case, the interpolation formula for hourly values is given as follows: 
 

 , = + ,  
  = 03, 09, 15, 21 . (4) 
 
Thus, the modeled daily spatial trend values = 0, . . . ,  and the 

estimated  = 03, 09, 15, 21  hourly regression coefficients can be used to 
interpolate the hourly values (Szentimrey, 2019). 

Looking at the average test statistics it is clear, that the correlation differs 
significantly from zero assumed in the null hypothesis. Moreover, these 
correlations allow us to conclude that there is a strong relationship between the 
daily and the six-hourly values. For example, if we choose a significance level of 
0.05 considering a t-test statistic for a 50-year data series, the critical value for an 
individual station is 2.01. Summarizing the results of Table 1, the model for 
gridding of the daily values can be used to produce the gridded hourly values. 
According to Table 1, there is a large difference between the regression 
coefficients ( ) related to measurements at 03 UTC, 09 UTC, 15 UTC, and 
21 UTC. Table 2 illustrates that hourly spatial trends can be well determined by 
linear regression on daily spatial trend (Szentimrey, 2019).  
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Table 1. Alpha and beta regression parameters for 12 months and for the 4 hourly values 

T03 T09 T15 T21
alpha beta alpha beta alpha beta alpha beta 

1 -1.34 0.91 -0.18 0.92 2.00 1.24 -0.48 1.01 
2 -1.82 0.90 0.23 0.97 2.77 1.32 -0.60 0.95 
3 -1.90 0.77 0.95 1.00 2.58 1.28 -0.74 0.94 
4 -1.00 0.69 0.92 1.08 1.50 1.27 -0.01 0.86 
5 0.34 0.66 0.73 1.07 -0.23 1.28 0.39 0.85 
6 2.16 0.63 1.19 1.05 -0.75 1.27 0.24 0.87 
7 2.34 0.63 0.31 1.09 -1.19 1.28 0.17 0.88 
8 2.22 0.65 1.57 1.03 -1.89 1.35 -0.29 0.90 
9 1.09 0.68 0.35 1.10 -2.01 1.43 -1.48 0.97 

10 0.22 0.68 0.45 1.10 -0.72 1.47 -0.52 0.91 
11 -0.59 0.80 0.69 0.97 0.64 1.35 -0.85 1.00 
12 -0.73 0.95 -1.15 0.89 1.90 1.07 0.07 1.08 

Table 2. Correlations (corr) and t-test statistics (tstat) for 12 months and for the 4 hourly 
values 

T03 T09 T15 T21

corr tstat corr tstat corr tstat corr tstat 

1 0.94 18.18 0.97 28.90 0.93 17.19 0.95 23.05 
2 0.89 12.81 0.95 20.50 0.90 14.20 0.94 20.11 
3 0.84 10.55 0.90 13.97 0.88 13.02 0.89 14.32 
4 0.75 7.72 0.88 12.51 0.90 14.03 0.82 10.25 
5 0.78 8.34 0.91 14.60 0.93 17.86 0.85 11.78 
6 0.74 7.35 0.91 14.79 0.93 17.48 0.84 11.39 
7 0.66 5.96 0.90 13.78 0.90 14.15 0.78 9.13 
8 0.69 6.34 0.86 11.65 0.88 12.60 0.77 8.91 
9 0.71 6.74 0.85 11.25 0.88 13.01 0.84 11.47 

10 0.71 6.68 0.85 11.28 0.86 11.70 0.81 9.95 
11 0.82 9.48 0.91 14.59 0.90 14.27 0.93 19.07 
12 0.95 19.71 0.96 23.87 0.93 16.77 0.95 22.81 

Next, we examined the data series using linear trend analysis and the 
ANOVA method for comparison of the hourly datasets to each other (Szentimrey, 
1989). The applied methodology is the same as described for the analysis of the 
six-hourly databases (Barna et al., 2021, 2022). In detailing the results using 
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ANOVA method, we present a comparison of the six-hourly datasets produced 
and examine the expected values and standard deviations for the extended area of 
Hungary. ANOVA methodology can also be used to examine the anomaly values. 
As a result it can be concluded that in the warmer years (1992, 2003, 2007) of the 
period under study (1971–2020), the anomaly relative to the mean is larger for 09 
and 15 UTC than for 03 and 21 UTC. The highest positive anomaly values can be 
associated to the southern Great Plain areas, and the lowest (negative) values can 
be assigned to the extensive surroundings of our mountains and lakes. 

4. Results 

4.1. ANOVA 

Turning to the results, Fig. 3 illustrates the spatial expected values between 1971–
2020 for the four hourly values, and Fig. 4 represents the temporal expected 
values where the examination period is also 1971–2020. In accordance to our 
expectations, the 21 UTC values are below the average daily temperature values, 
but the 09 UTC values can already be related to the 18 UTC data series examined 
earlier Barna et al. (2021). The 15 UTC data clearly have the highest values 
among the shown data series. Looking at the spatial distribution of the values in 
Hungary, the central part of Transdanubia and the southern Great Plain region can 
be characterized by higher values in the morning, Similar spatial trend can be 
observed at 09 UTC, where higher values can be attributed to the southern areas 
of the country, particularly the Körös-Maros region (12–14 °C). Also for 15 UTC, 
lower values are obtained in the northern part of Hungary. The 21 UTC data series 
are lower values in the Northern Central Mountains and the Transdanubian 
Central Mountains, compared to the rest of the country. 
 

 

Fig. 3. Yearly spatial expected values for hourly values (03 UTC, 09 UTC, 15 UTC, 21 UTC) 
(1971–2020) ( C). 
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Fig. 4. Yearly temporal expected values for hourly values (03 UTC (a), 09 UTC (b), 15 UTC 
(c), 21 UTC (d)) (1971–2020) ( C). 

Examining the spatial distribution of the standard deviation values, it can be 
said that the 03 UTC database is the least variable, and the 15 UTC database is 
considered the most variable according to Fig. 5. Compared to the analyses for 
the main terminus measurements (Barna et al., 2021), here we can already assign 
higher standard deviation values to the data series. Looking at the maps comparing 
temporal standard deviations, the 03 UTC case is the least variable (Fig. 6). Fig. 6 
shows that the southern regions of the country exibit the lowest standard 
deviation, with minimum values below 0.6. Compared to 09 UTC, higher standard 
deviations can be assigned to the central parts of the country. In case of the 
15 UTC, two contiguous areas with standard deviation above 1.15 can be seen, 
which was not seen previously the border areas between Körös-Maros and the 
northwestern borderside of the country. The 21 UTC case also proves to be less 
variable with higher values in the southwestern part of the country. 



258 

 

Fig. 5. Yearly spatial standard deviation values for hourly values (03 UTC, 09 UTC, 15 UTC, 
21 UTC) (1971-2020) ( C).  

 

 

 

 

Fig. 6. Yearly temporal standard deviation values for hourly values (03 UTC (a), 09 UTC (b), 
15 UTC (c), 21 UTC (d)) (1971–2020) ( C). 
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All in all, the diagrams above show the spatial standard deviations and the 
maps show the average of the temporal standard deviations in the whole area of 
Hungary. If we examine the average temperature, the average of the variances 
over time is the largest (Barna et al., 2021). The consequence is that since the 
temporal variance are higher (Table 3), longer data series are needed for each test. 
If the spatial variability were greater, many more station data series would be 
required to conduct the desired analyses. For example, when examining the 
15 UTC data series based on Fig. 6, we need a much denser spatial coverage than 
the 03 UTC data, because the values are much more variable due to the greater 
spatial dispersion. On the other hand, if the variance in time is larger, a long 
sample is required for accurate estimates. 

 
Table 3. Yearly Anova statistics 

Yearly Anova statistics T03 T09 T15 T21 

Total mean 6.88 11.62 14.03 8.86 

Total variance 0.66 1.50 1.94 1.06 

Spatial variance of temporal means 0.11 0.55 0.89 0.40 

Spatial mean of temporal variances 0.55 0.95 1.05 0.67 

Temporal variance of spatial means 0.53 0.93 1.02 0.65 

Temporal mean of spatial variances 0.13 0.58 0.92 0.41 

 

 

4.2. Trend analysis 

In this section, we present the results of the trend analysis which looks at how the 
data series changed over time. It is important that the trend maps show the change 
over the entire period, not the direction tangent. We examined the hourly data 
series on an annual and seasonal scales. We fitted linear trend to the data series. 
Annual changes are presented first (Fig. 7). We tested the estimated trend at the 
significance level of 0.1. With the exception of winter, we identified significant 
change for the entire area of Hungary. Regarding the 03 UTC trend values, an 
area characterized by values below 1.5 °C can be observed. In case of 09 UTC, 
values above 2.5 °C occur in the central parts of the country. Even the trends for 
the 15 UTC database, values above 2 °C indicated across the country, lower 
values can be seen in the northeastern areas of the country. However, the spatial 
distribution of the 21 UTC trend values shows a very diverse pattern. Values 
below 1.75 °C are typical in the southeastern areas of the country. Moving 
eastwards, higher and higher values are visible, in the central part of the country 
the trend values ranging from 1.75–2.25 °C. Besides in the northeastern part of 
the country, values between 2.25 and 2.5 °C appear. 
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Fig.  7. The values of yearly change over the whole period (1971–2020), for hourly values  
(03 UTC (a), 09 UTC (b), 15 UTC (c), 21 UTC (d)), with linear trend estimation ( C). The 
change is significant at the 0.1 significance level in the entire area of Hungary. 
 
 
Let us have a look at how the spring trends are shaping up. Based on Fig. 8 

we can see that the spatial distribution of the 03 UTC trends has an area with the 
highest values appearing along the northwestern border. Apart from this, the trend 
values remain below 2 °C in the rest of the country. Values below 1 °C also appear 
in the extended area of the Danube and the Körös-Maros region. The largest area 
trends above 2.5 °C were obtained in the 09 UTC database. In addition, the 
southern Transdanubian region and the eastern area of the Great Plain can also be 
characterized by trends above 2 °C. A northwestern region can be characterized 
by values above 2.5 °C at 15 UTC. Going east these values decrease continuously, 
so in the areas south from the Danube and west from the Tisza, values above 
2.25 °C appear and further east above 2 °C then above 1.75 °C. Examining the  
21 UTC case it can be said, that the spatial distribution of the values can be best 
identified with the 18 UTC case examined in Barna et al. (2021). However, in 
terms of the order of magnitude of the values as a result of the trend analysis, this 
database is characterized by lower values. Trend values below 1 °C also appear 
in the southern areas of the country, and the highest values above 2 °C can be 
assigned to the northeastern area. 
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Fig. 8. The values of spring change over the whole period (1971-2020), for hourly values  
(03 UTC (a), 09 UTC (b), 15 UTC (c), 21 UTC (d)), with linear trend estimation ( C). The 
change is significant at the 0.1 significance level in the entire area of Hungary. 
 
 
Fig. 9 illustrates the results of the summer trend analysis. The lowest trend 

values can be assigned to the 03 UTC case. However, as we expect it, as they are 
summer tests, they are higher compared to the results of the other seasons and the 
03 UTC database’s annual results. The lowest values (<2.25 °C) appear in the 
Transdanubian areas and the Southern Great Plain region. Examining the trend 
values of 09 UTC, lower values appear in the southwestern and northeastern areas 
of the country compared to the central areas, but these are also above 3 °C. 
Comparing all the cases analyzed, it is clear that the highest values appear for 
15 UTC. Along the northeastern border, where the lowest values also occurred, 
we can declare values above 3 °C. With the exception of this region temperature, 
values above 3.25 °C are typical throughout the country. For the 21 UTC dataset, 
the overall values are lower compared to the results of trend estimation for the 09 
and 15 UTC data. The 21 UTC hourly trend values are the lowest along the 
southwestern border and continue to increase as we move towards the eastern half 
of the country. To the east from the Danube, except for the southern areas of the 
Danube-Tisza region, the typical estimated trends are already above 2.75 °C. 
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Fig. 9. The values of summer change over the whole period (1971-2020), for hourly values 
(03 UTC (a), 09 UTC (b), 15 UTC (c), 21 UTC (d)), with linear trend estimation ( C). The 
change is significant at the 0.1 significance level in the entire area of Hungary. 
 
 
 
Among the analyzed seasonal trends, autumn is illustrated by Fig. 10. In the 

case of the 03 UTC data, the highest values can be assigned to the region east 
from Tisza, and the lowest values obtained by linear trend estimation to the 
northern and southwestern areas of Transdanubia. Regarding the 09 UTC dataset, 
the Transdanubian region also shows lower values and even lower values can be 
highlighted in mountainous areas. When examining the 15 UTC database, the 
lowest trend values can be associated with the mountainous and southwestern 
areas, while the highest trend values can be located east from the line of the Tisza 
and in the extensive area of the capital city. Moreover, examining the entire area 
of Hungary, trend values above 2 °C appear in many places at 15 UTC data. 
Looking at the results for the 21 UTC database, we can see a similar tendency of 
the spatial distribution, i.e., the trend values obtained by fitting linear trend, 
continue to increase from west to east. Thus, lower values characterize the 
southwestern part of the country, and the greatest values appear in the northeastern 
part. 
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Fig. 10. The values of autumn change over the whole period (1971-2020), for hourly values 
(03 UTC (a), 09 UTC (b), 15 UTC (c), 21 UTC (d)), with linear trend estimation ( C). The 
change is significant at the 0.1 significance level in the entire area of Hungary. 
 
 
Finally, turning to the analysis of winter trends, the change occurring during 

the entire test period cannot be considered significant trend for all examined 
stations. There are 11 stations at 03 UTC, 32 stations at 09 UTC, 16 stations at 
15 UTC, and 19 stations at 21 UTC with significant change. Taking the hourly 
databases one by one, in case of 03 UTC, lowest trends can be observed in the 
southwestern areas of the country. Compared to this, the 09 UTC tend values are 
already particularly high with values above 1.2 °C across the country. However, 
this is still considered low, compared to the results obtained with the other three 
seasonal trend analysis. Regarding 15 UTC, Hungary can be separated into two 
parts according to the estimated trend, since the lowest values appear in the 
northeastern areas. Moving westward the trend values gradually increase. 
According to this, the highest change appear reaching the western border areas, and 
this is the area where the stations with significant change are located. Based on the 
tests of significance of trends for the 21 UTC data, Fig. 11 indicates that the 
northwestern and northeastern areas of the country show higher values compared 
to the central and southern areas. 
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Fig. 11. The values of winter change over the whole period (1971-2020), for hourly values 
(03 UTC (a), 09 UTC (b), 15 UTC (c), 21 UTC (d)), with linear trend estimation ( C). Red 
points indicate the place of significant change at 0.1 significance level. 

 

 

 

 

For the comparison from other point of view of the seasonal trends to each 
other, Table 4 consists of the minimum, maximum, and average trend values 
appear in the country for each six-hourly data. Minimums are the highest at 
09 UTC, the only exception is in summer, when the value belonging to the 15 
UTC dataset is the highest. The same distribution appears when examining the 
means. However, in winter, spring, and summer the maximums are the highest at 
15 UTC, and in autumn values are the highest at 09 UTC. 
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Table 4. Seasonal trend values over the whole period (1971–2020) of the six-hourly values 
obtained by linear trend estimation. Minimum, mean and maximum values are given as 
spatial values. 

03 UTC trend Min Mean Max 

Winter 0.52 1.10 1.46 

Spring 0.60 1.33 2.28 

Summer 1.47 2.29 2.93 

Autumn 1.56 2.07 2.44 

09 UTC trend Min Mean Max 

Winter 0.75 1.37 1.79 

Spring 2.00 2.42 2.84 

Summer 2.90 3.35 3.79 

Autumn 1.97 2.43 2.89 

15 UTC trend Min Mean Max 

Winter 0.63 1.27 1.92 

Spring 1.75 2.29 2.97 

Summer 2.95 3.49 3.95 

Autumn 1.65 2.34 2.63 

21 UTC trend Min Mean Max 

Winter 0.58 1.23 1.67 

Spring 0.46 1.71 2.34 

Summer 1.99 2.77 3.12 

Autumn 1.43 2.13 2.77 

 

5. Main conclusions 

According to our analysis, we can highlight that the results of the ANOVA 
method indicate the differences between the hourly databases regarding the 
expected values and standard deviations. The presented maps and diagrams 
illustrate that the 15 UTC database has the highest expected values. Considering 
the standard deviations, the difference of the datasets is not particularly large, but 
the temporal and spatial variability of the 03 and 21 UTC databases and the 09 
and 15 UTC databases can be separated from each other. As a result of the trend 
analysis, it can be seen that the 15 UTC database shows the highest trends, as 
expected. We can conclude that the estimated annual and seasonal linear trends 
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emerge in the 03 UTC and 21 UTC data series are similar, however, comparing 
the 09 UTC and 15 UTC trend values, the magnitude and spatial distribution of 
those differe too. 

Acknowledgements: This paper was supported by the FFT FTA NP2022-II-8/2022 Sustainable 
Development and Technologies National Programme of the Hungarian Academy of Sciences and the 
RRF-2.3.1-21-2022-00014 National Multidisciplinary Laboratory for Climate Change. 

References 

Barna, Zs., Izsák, B., and Pieczka, I., 2021: Trendvizsgálat: Óraértékek hazai h mérsékleti trendje. In: 
47. Meteorológiai Tudományos Nap, 2021. november 18. Globális éghajlati trendek, hazai 
kutatási kihívások. Országos Meteorológiai Szolgálat, Budapest. (In Hungarian) 
https://doi.org/10.21404/47.MTN.2021  

Barna, Zs., Izsák, B., and Pieczka, I., 2022: Trendvizsgálat: óraértékek hazai h mérsékleti trendje. 
Légkör 67, 122–129. (In Hungarian) https://doi.org/10.56474/legkor.2022.3.1 

Barna, Zs., Izsák, B., and Pieczka, I., 2023: Comparison of interpolation methods of six-hourly temperature 
data series. Eleventh Seminar for Homogenization and Quality Control in Climatological Databases 
and Sixth Interpolation Conference Jointly organised with the Fourteenth EUMETNET Data 
Management Workshop, Budapest, Hungary, 9–11 May 2023, 62–70. 

Izsák, B., Szentimrey, T., Bihari, Z., and Barna, Zs., 2023: Development of observation based 
temperature dataset. Eleventh Seminar for Homogenization and Quality Control in Climatological 
Databases and Sixth Interpolation Conference Jointly organised with the Fourteenth EUMETNET 
Data Management Workshop, Budapest, Hungary, 9–11 May 2023, 51–56. 

Izsák, B., 2023: Homogenization and interpolation of relative humidity hourly values with MASH and 
MISH software. Int. J. Climatol 43, 6285–6299. https://doi.org/10.1002/joc.8205 

Szentimrey, T., 1989: A lineáris analitikus trendvizsgálat néhány elvi módszertani kérdése. Id járás 93, 
151–156. (In Hungarian)  

Szentimrey, T., 2017: Manual of homogenization software MASHv3.03. Hungarian Meteorological 
Service. 

Szentimrey T., 2019: Mathematical methodology and software for comparison of gridded datasets. 
Budapest, OMSZ tanulmány. 

Szentimrey, T., 2020: Mathematical questions of spatial interpolation and summary of MISH. Tenth 
Seminar for Homogenization and Quality Control in Climatological Databases and Fifth Conference 
on Spatial Interpolation Techniques in Climatology and Meteorology, Budapest, 59–69. 

Szentimrey, T. and Bihari, Z., 2007: Mathematical background of spatial interpolation, meteorological 
interpolation based on surface homogenized data bases MISH (Meteorological Interpolation 
based on Surface Homogenized Data Basis). Proceedings of the Conference on Spatial 
Interpolation in Climatology and Meteorology, 2004 Október 24–29, Budapest, 17–27. 

Szentimrey, T. and Bihari, Z., 2014: Manual of interpolation software MISHv1.03, Országos 
Meteorológiai Szolgálat. 

Szentimrey, T., Bihari, Z., and Lakatos, M., 2011: Mathematical, methodological questions concerning 
the spatial interpolation of climate elements. Proceedings of the Second Conference on Spatial 
Interpolation in Climatology and Meteorology, Budapest, Hungary, 2009. Id járás 115, 1–11. 

Szentimrey, T., Bihari, Z., and Lakatos, M., 2014a: Mathematical questions of homogenization and 
quality control. Eighth Seminar for Homogenization and Quality Control in Climatological 
Databases and Third Conference on Spatial Interpolation Techniques in Climatology and 
Meteorology, Budapest, 5–23. 

Szentimrey, T., Bihari, Z., and Lakatos, M., 2014b: Mathematical questions of spatial interpolation of 
climate variables. Eighth Seminar for Homogenization and Quality Control in Climatological 
Databases and Third Conference on Spatial Interpolation Techniques in Climatology and 
Meteorology, Budapest, 107–114. 



DOI:10.28974/idojaras.2024.2.8  

267 

IDŐJÁRÁS 
Quarterly Journal of the HungaroMet Hungarian Meteorological Service 

Vol. 128, No. 2, April – June, 2024, pp. 267–286 

Analysis of daily and hourly precipitation interpolation 
supplemented with radar background: 

Insights from case studies 

Kinga Bokros*, Beatrix Izsák, and Zita Bihari 
 

National Laboratory for Water Science and Water Safety,  
HungaroMet Hungarian Meteorological Service, 
Kitaibel Pál Street 1, H-1024, Budapest, Hungary 

 
*Corresponding author E-mail: bokros.k@met.hu 

 
(Manuscript received in final form February 1, 2024)  

 
 

Abstract— This study concerns the interpolation of daily and hourly precipitation data in 
regions where small but intense thunderstorms, such as supercells, have occurred, and 
which, due to their size, often evade conventional meteorological stations. Consequently, 
relying solely on these measurements for interpolation can introduce errors and yield 
incomplete representations. To mitigate these issues, this research incorporates radar 
background information. The study selects days marked by significant precipitation during 
summer season and employs the Meteorological Interpolation based on Surface 
Homogenized Data (MISH) method for interpolation, both with and without radar-derived 
background data. Furthermore, our research also investigates the adaptability of the MISH 
method in handling radar anomalies, which encompass errors, missing data, and spurious 
measurements resulting from unintended radar reflections. Additionally, it examines 
whether the precipitation measured by radar can be used for climatic purposes on its own 
(without traditional measurements). Statistical techniques are employed to assess the 
improvement in interpolation quality with the inclusion of radar data and to quantify the 
relationship between interpolations with and without supplementary radar information. The 
study underscores the critical role of combining measurement data and radar products in 
the interpolation framework. This approach has implications for societal and agricultural 
sectors and offers potential benefits for hazard forecasting accuracy. 
 
Key-words: precipitation measurements, radar background data, interpolation, MISH 
method, thunderstorm, Hungary 

1. Introduction 

It is a common phenomenon that small but intense thunderstorms, particularly 
supercells, with significant precipitation passes among meteorological stations. 

https://doi.org/10.28974/idojaras.2024.2.8
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measurements and observations of the substantial daily precipitation 
accumulations, that may occur within relatively small geographic areas. 
Consequently, the interpolation based solely on these measurements will also be 
subject to errors and will not provide a complete, accurate picture. The mitigation 
of potential interpolation errors necessitates the incorporation of background 
information sources. Such sources may encompass data derived from satellite 
imagery, weather forecasts, or radar measurements. These auxiliary data play a 
critical role in refining the accuracy of precipitation interpolation processes, 
thereby enhancing our understanding of spatial and temporal precipitation 
patterns. 

Different countries have developed different interpolation methods. The 
German approach to spatially interpolating hourly rainfall employs a multivariate 
geostatistical method known as kriging with external drift (KED). This method 
incorporates additional information from sources such as topography, daily 
rainfall data, and weather radar data to enhance the spatial representation of short-
time-step rainfall. Through extensive investigations during various flood events, 
it was found that the type of semivariogram had a minimal impact on interpolation 
performance. Weather radar data proved particularly valuable for convective 
summer events, while daily rainfall data sufficed for stratiform winter events. This 
method also employs a multi-step interpolation procedure to improve the 
representation of fractional precipitation coverage, ultimately enabling more 
accurate hydrological modeling of floods (Verworn and Haberlandt, 2011). The 
Austrian approach to spatial precipitation interpolation involves two steps: 
deriving monthly climatological mean precipitation fields using kriging with 
external drift and topographic predictors, followed by calculating daily relative 
anomalies and multiplying them with the respective background fields, ensuring 
consistency with the climatology and minimizing systematic errors (Hiebl and 
Frei, 2023). The Ensemble-based Statistical Interpolation with Gaussian 
Anamorphosis (EnSI-GAP) is a spatial analysis method for hourly precipitation 
data which is used in Norway. It combines ensemble forecasts, radar-derived 
estimates, in situ observations, and citizen observations to synthesize precipitation 
information. EnSI-GAP assumes locally stationary and transformed Gaussian 
random fields, with gamma distribution as the marginal distribution at each point. 
It is designed to run in parallel, considering each hour independently, and can 
adapt to situations where the background ensemble does not represent the truth 
accurately, making it valuable for filling gaps in precipitation data and providing 
accurate estimates, particularly in observation-sparse regions (Lussana et al., 
2021). 

In our research to process the daily precipitation datasets, we employed the 
MISH (Meteorological Interpolation based on Surface Homogenized Data) 
method, as detailed in the work of Szentimrey and Bihari (2007, 2014). The 
interpolation procedure was executed for the entire geographic expanse of the 
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country, and it was conducted both with and without the incorporation of radar-
derived background information. 

We also made an effort to investigate how the MISH interpolation method 
handles radar-related anomalies, including errors, absent data, and spurious 
measurements arising from unintended radar signal reflections or echoes from 
non-target sources. To explore this matter, we conducted a comprehensive 
selection of days characterized by distinct scenarios: firstly, instances where radar 
measurements failed to detect precipitation over a substantial portion of the 
country, despite traditional precipitation measuring stations registering 
precipitation events. Secondly, we identified days featuring the occurrence of 
second-trip echo radar errors. Subsequently, we examined these datasets, which 
encompassed both measurements and radar-derived products, with the outcomes 
of the interpolation process. This comparative analysis underscores the critical 
importance of combining measurement data and radar products in the 
interpolation framework. 

Finally, we sought the answer to whether radar-measured precipitation, 
beyond its role in the interpolation of daily and hourly data, could serve 
climatological purposes, specifically for conducting long-term analyses, such as 
those spanning the period from 2015 to 2022. 

Our analytical approach centered on the utilization of statistical techniques 
to elucidate the extent to which the inclusion of radar-derived data as background 
information enhanced the quality of the interpolation. Furthermore, our 
investigation aimed to quantify the robustness of the relationship existing between 
the interpolations conducted with the integration of radar-derived background 
information and those performed without such supplementary data. 

The occurrence of intense thunderstorm cells, which are frequently 
associated with substantial precipitation, can result in flash flooding, thereby 
engendering myriad adverse repercussions in societal and agricultural domains. 
Consequently, the judicious integration of radar-derived background information 
into the interpolation process assumes paramount importance. This approach 
offers substantial advantages within the realms of both society and agriculture, 
and it holds potential utility in enhancing the accuracy of hazard forecasting. 

2. Data and methods 

2.1. Precipitation measurements in Hungary 

In our research, we harnessed two pivotal sources of meteorological data in 
Hungary: precipitation measurements and radar-derived data. The former 
Hungarian Meteorological Service (OMSZ), now HungaroMet operates a 
comprehensive network of 276 meteorological stations that continuously gather 
real-time data (shown in Fig. 1 with dark blue dots). Additionally, HungaroMet 
collects daily precipitation data from 500 stations on a monthly basis (shown in 
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Fig. 1 with red dots). This extensive network, including 500 stations, was used to 
create a rich database interpolated to the entire country using a homogenization 
process (Szentes et al., 2023) with the software MASH (Szentimrey, 1999; 2008; 
2017; 2023). This means that for studies conducted before 2023, we created 
interpolated data using the homogenized daily records from the 500 stations. 
However, for our daily and hourly rainfall analyses in 2023, we only used data 
from 276 stations. 

Furthermore, HungaroMet maintains a network of five radar stations across 
Hungary, located in Budapest, Pogányvár, Szentes, Napkor, and Hármashegy, as 
indicated by the yellow dots in Fig. 1. These radar stations cover the entire 
geographical expanse of the country within a 240-kilometer radius, employing ten 
different elevation angles in five-minute measurement cycles. For our 
investigation, we relied on daily and hourly radar-derived precipitation data. 

 
 

 
Fig. 1. Radar network (yellow), real-time (dark blue), and traditional precipitation measurement 
stations (red) of the HungaroMet. 

 

 
During the process of day selection, our foremost consideration was to opt 

for days falling within the summer semester, given that this period is characterized 
by the occurrence of localized, intense rainfall-producing showers and 
thunderstorms. The three days chosen for this purpose are 

• June 5, 2021, 
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• July 16, 2021, 
• July 13, 2023. 

In the case of the latter date, we conducted not only daily but hourly 
precipitation interpolation. 

2.2. Methods and software 

2.2.1. SOFTWARE MISHv1.03 

The software version MISHv1.03 consists of two units that are the modeling and 
the interpolation systems. The interpolation system can be operated on the results 
of the modeling system. We summarize briefly the most important facts about 
these two units of the developed software (Szentimrey and Bihari, 2014). 

Modeling subsystem for climate statistical (local and stochastic) parameters: 
– Based on long homogenized data series and supplementary deterministic 

model variables. The model variables may be such as height, topography, 
distance from the sea, etc..  

– Benchmark study, cross-validation test for interpolation error or 
representativity. 

– High resolution grid (e.g., 0.5’×0.5’),  
Interpolation subsystem:  

– Additive (e.g. temperature) or multiplicative (e.g. precipitation) model and 
interpolation formula can be used depending on the climate elements. 

– Daily, monthly, seasonal values and many years’ means can be interpolated. 
– Capability for application of supplementary background information 

(stochastic variables) e.g., satellite, radar, forecast data. 
– Data series completion (missing value interpolation for daily or monthly 

station data).  
– Interpolation, gridding of monthly or daily station data series for given 

predictand locations.  
The MISH-MASH software can be downloaded from: 
http://www.met.hu/en/omsz/rendezvenyek/homogenizationand_interpolation/software/ 
 

2.2.2. Multiplicative interpolation (precipitation) 
Mathematical model 

Let us assume that ,  is the predictand, , = 1, . . . ,  are predictors (where s represents space and t represents 
time) 
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The linear or additive model is appropriate in case of normal probability 
distribution. However, in case of a quasi lognormal distribution (e.g., precipitation 
sum), we deduced a mixed additive multiplicative formula which is used also in 
our MISH system, and it can be written in the following form, 
 = +   (1) 
 
where the interpolation parameters are ,0,0 >> iqϑ 0 = 1, . . . , , and = 1.  

The interpolation parameters are related to the median: = , =
 , where ( )im s = 0, . . . ,  are the spatial median values.  
The optimum interpolation parameters are uniquely determined by the 

climate statistical parameters (local parameters, stochastic connections). 
Modeling of climate statistical parameters can be based on long data series and 
model variables. 

Since the parameters q and  are defined with the median, it is clear that the 
multiplication part of the interpolation formula itself dominates for precipitation 
amounts reaching the median, so the first part of the formula holds. If little or no 
precipitation is measured, the interpolation formula is limited to the additive part. 
Thus, the good properties of the quasi-multiplicative formula itself give us the 
ability to interpolate with the same modeled climate statistical parameters for each 
time of day or hour as for the daily values. 

2.2.3. Interpolation with background information in MISH 

The background information, such as forecast, satellite, and radar data can 
efficiently decrease interpolation errors. Let us assume that , : predictand,  , :  interpolated predictand without background information.  
Moreover, background information on a dense grid is also given: = , | , where   is the space domain. , : interpolated predictand with background information. 
 
The linear regression model is given by: 
 , = + , + ,   (2) 
 
where  represents spatial trend and ,  is the noise term. 
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Estimation of parameters  and , as well as the correlation =corr , , , , we rely on ,  and , for = 1, . . . , , along 
with a modeled spatial trend. , = , + , ,  (3) 

 
where  , = , , . . . , , ; , . . , , , . . , , 
i.e., the interpolation without background information, , = , , . . . , , ; , . . , , , . . ,  
i.e., the same interpolation formula for the background information,  
and  is the estimated regression coefficient. 
 
Remark: 

– If  = 0    then  , = ,  . 
That is, the background information is so bad that we do not use it at all.  

– If    , = , = 1, . . . ,    then  R(t) = 1 and  , =, . 
That is, the measurements are the same as the radar information, in which case 

the radar information will also be the value of ,  at the points where no 
measurements are taken. 

3. Results 

3.1. June 5, 2021 

On June 5, 2021, a precipitation zone traversed the country, accompanied by 
showers, thunderstorms, and sporadic hail in some areas. The highest daily 
precipitation amounts were observed in the southwestern region of the country, 
with measurements of 19.3 and 19.8 mm recorded at Nagykanizsa and Letenye 
stations. At Becsehely station, 39 mm of precipitation was reported. The result of 
interpolation without background information is shown in Fig. 2, which displays 
a maximum precipitation amount of 35.3 mm in the southwestern region, while 
lesser amounts of precipitation occurred in the north and northeastern parts of the 
country. 
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Fig. 2. Interpolation of 24-hour total precipitation [mm] on June 5, 2021, without background 
information (using 500 measurements). 
 
 
Fig. 3 illustrates the 24-hour radar rainfall amount, which was used as 

background information during the interpolation process. Evidently, it is 
observable that a significantly higher 24-hour precipitation total appears in the 
southwest, in contrast to Fig. 2, where the absence of this pronounced 
precipitation maximum suggests that the most intense and substantial 
precipitation from the thunderstorm cell bypassed the surface precipitation 
monitoring stations, but was nevertheless detected by the radar. 

In addition to the prominent values in the southwest, Fig. 3 also reveals a 
band of 15–20 mm equivalent precipitation in the western regions of the country 
and the Transdanubian region, which does not appear among the measurements.  
 

 

 

 
Fig. 3. 24-hour radar precipitation amount [mm] (June 5, 2021). 
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While interpolation without the radar background information indicate  
35–39 mm of maximum precipitation within 24 hours, the incorporation of radar 
background information into the MISH interpolation revealed a precipitation total 
of 106.9 mm in the southwestern region (Fig. 4). 

A strong relationship was observed between the observations and the 
background information, with a high correlation coefficient of R = 0.889. 
Furthermore, with the inclusion of background information in the interpolation, 
higher precipitation amounts were also observed in the northern Transdanubian 
region. It is apparent that while 0–5 mm of precipitation is depicted in the northern 
Transdanubian region without background information, the utilization of radar 
data results in daily precipitation totals of 5–30 mm. 

For lesser amounts of precipitation that fell over a larger area, the two 
interpolation products exhibited greater agreement (in northern and northeastern 
Hungary), yielding values ranging between 5–15 mm in both cases. 

 
 

 
Fig. 4. 24-hour interpolated precipitation amount [mm] on June 5, 2021, with radar background 
information (using 500 measurements). 
 
 
 

3.2. Flash flood in Kunfehértó (July 16, 2021) 

On July 16, 2021, meteorological conditions in Hungary were significantly 
impacted by a cold front at elevated altitudes, leading to the occurrence of 
inclement weather characterized by rainfall and storms across various regions of 
the country. The most substantial levels of precipitation were observed in several 
areas, including southern Transdanubia, the Southern Great Plain, the region 
situated between the Danube and Tisza rivers, and Pest County. Furthermore, 
notable thunderstorms with associated copious rainfall were witnessed in the 
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Szatmár Plain and Bodrogköz regions located in the eastern part of the country. 
The meteorological measurements indicated that the highest daily precipitation 
total was recorded at Báta station, amounting to 49.2 mm. An interpolation 
conducted without the incorporation of background information suggested an 
even greater maximum daily precipitation total just a few kilometers from Báta, 
specifically in the village of Dávod, where it reached 65.02 mm (refer to Fig. 5). 
 
 

 
Fig. 5. Interpolation of 24-hour total precipitation [mm] on July 16, 2021, without background 
information (using 500 measurements). 

 

 
The three figures displaying 24-hour rainfall totals, as depicted in Figs. 5–7, 

exhibit remarkable similarity. They collectively reveal a pronounced correlation 
of 0.918 between the observed data and the radar background information. All 
three figures consistently depict higher levels of precipitation in the southern and 
northern regions of Hungary. However, it is noteworthy that the radar failed to 
capture the elevated precipitation values observed in the Szatmár Plain and 
Bodrogköz regions (refer to Fig. 6), where the recorded 24-hour precipitation 
levels ranged from 5 to 15 mm. In contrast, the interpolation without the use of 
radar background information (Fig. 5) suggested the presence of approximately 
60 mm of precipitation within a smaller area, particularly reflecting 57.2 mm of 
rainfall over a 24-hour period at Gacsály station on July 16, 2021. 

Another significant discrepancy arises from the fact that the radar database 
exclusively registered the occurrence of 60 mm of rainfall within an hour and a 
half, which led to a flash flood in Kunfehértó, while this event remained 
unrecorded by the primary meteorological stations. Consequently, when 
conducting interpolation without radar background information, only an 
estimated 15–20 mm of precipitation is indicated in the proximity of Kunfehértó. 
All of this also points to the importance of integrating radar data into rainfall 
interpolation. 
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Fig. 6. 24-hour radar precipitation amount (July 16, 2021). 

 

 

 

 

The results obtained through interpolation employing radar background 
information are presented in Fig. 7. This representation elucidates the higher daily 
precipitation totals observed in eastern Hungary, as well as the significant 
precipitation event surpassing 60 mm, which was responsible for the flash flood 
incident in Kunfehértó over the 24-hour period. 

 
 
 
 

 
Fig.  7. 24-hour interpolated precipitation amount on July 16, 2021, with radar background 
information (using 500 measurements). 
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3.3. July 13, 2023 

In the early hours of July 13, 2023, an advancing thunderstorm system, 
characterized by its northeasterly trajectory, precipitated copious rainfall and 
intense downpours across the entire country. Subsequently, this precipitation zone 
dissipated later in the afternoon, thereby ceasing its impact on the country. 

On July 13, 2023, some irregularities occurred in precipitation measurement. 
Therefore, we are examining the day on an hourly basis. Comparing the results of 
the interpolated daily precipitation amount measured by precipitation gauges 
(Fig. 8) with the results of radar measurements (Fig. 9), it is evident that in a 
significant part of the country, including the Great Plain and the northern regions, 
there is little to no precipitation due to the temporary absence of radar 
measurements. Regarding the regional average, there is a difference of 2 mm 
between the two precipitation datasets, however in some areas (northern 
Hungary), a difference of 10–14 mm can be observed. 

 
 

 
Fig. 8. Interpolation of 24-hour total precipitation [mm] on July 13, 2023, without background 
information (using 276 measurements). 

 

 

The significant disparity between the interpolated dataset, which lacks radar 
background information (Fig. 8), and the radar measurements (Fig. 9) can be 
attributed to the smaller number of precipitation stations; additionally, the absence 
of radar measurements further exacerbates this difference. Consequently, the 
correlation coefficient that quantifies the association between these two datasets 
is notably diminished, standing at a modest value of 0.556. 
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Fig. 9. 24-hour radar precipitation amount (July 13, 2023). 
 
 
 
Subsequent to the incorporation of radar-derived background information in 

the interpolation process of precipitation measurements, the daily precipitation 
amount of 2–6 mm missing from the radar measurements also appeared in the 
central and southeastern parts of the country (Fig. 10). 

 
 
 

 
Fig. 10. 24-hour interpolated precipitation amount on July 13, 2023, with radar background 
information (using 276 measurements). 
 
 
 
In addition to the temporary absence of radar measurements, there was also 

a rare occurrence of a so-called second-trip echo radar error when multiple 
reflections from an extremely intense thunderstorm cell in the area of Slovenia 
were observed on the radar images (Fig. 11). 
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Fig. 11. Second-trip echo radar error caused by extremely high thunderstorms. 
 
 
 

3.4. Hourly analysis 

On July 13, 2023, an examination of the hourly precipitation amounts revealed 
that the amount of precipitation that fell in the Great Plain and the southeast, 
according to traditional measurements, which is missing from the 24-hour radar 
precipitation amount, could have fallen in the morning hours, around 7 UTC 
(Fig. 12). 
 
 
 

 
Fig. 12. Interpolation of hourly total precipitation [mm] on July 13, 2023, 7 UTC without 
background information (using 276 measurements). 
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Unexpectedly, the 7-hour cumulative radar precipitation data reveals the 
existence of a precipitation zone in central and southeastern Hungary (Fig. 13) 
that is absent in the corresponding 24-hour radar measurements (Fig. 9). 

We sought to identify the cause of the unexpected outcome, focusing on the 
likely disparities between corrected and uncorrected hourly precipitation sums. 
We assumed that while the corrected precipitation amount reflects the missing 
precipitation, this deficiency remains uncompleted in the uncorrected dataset. 
Consequently, we examined the uncorrected hourly radar sum. However, our 
initial hypothesis was not confirmed, as the investigation of uncorrected radar 
precipitation sums yielded similar results, wherein the precipitation deficit from 
the 24-hour total also manifested. 

Notwithstanding this, using the MISH method, both hourly and daily 
interpolation effectively captures the precipitation amounts in question for the 
northern part of Hungary, as well as the central and southeastern parts of the 
country (Fig. 10 and Fig. 14). The relationship which was observed between the 
hourly observations and the background information is really high despite the 
absent precipitation, the correlation coefficient is 0.91. 

 
 
 
 
 

 
Fig. 13. Hourly radar precipitation on July 13, 2023, 7 UTC. 
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Fig. 14. Interpolation of hourly total precipitation [mm] on July 13, 2023, 7 UTC with 
background information (using 276 measurements). 

 

 
The "second-trip echo" radar error signal that occurs around 10 UTC 

(Fig. 11) cannot be identified in the display of the 24-hour radar precipitation 
amount (Fig. 9), so it is worth examining the hourly precipitation at 10 UTC to 
make sure of the presence of a false precipitation signal. 

Fig. 15 illustrates that inaccuracies stemming from deceptive reflections 
undergo filtration within the radar database, consequently precluding their 
incorporation in the display. 

 
 
 
 

 
Fig. 15. Hourly radar precipitation [mm] on July 13, 2023, 10 UTC.  
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3.5. Correlation between measurements and radar information, monthly values 

Through the presentation of case studies, it becomes evident that the integration 
of radar precipitation data holds considerable utility in the interpolation. 
Simultaneously, the inquiry arises regarding the suitability of radar-measured 
precipitation for climatological applications. To address this query, we aggregated 
monthly precipitation data obtained through radar measurements from the year 
2015 (the commencement of available radar data) to 2022, subsequently 
conducting a comparative analysis with conventionally measured precipitation. 
Employing data encompassing homogenized precipitation records from 500 
stations (Szentes et al., 2023) over the period 2015–2022, we applied the MISH 
interpolation technique to the monthly precipitation values.  

For each month, we calculated the spatial average and calculated the 
correlation between the two datasets. The strongest linear relationship occurs in 
August, while February has the weakest correlation (Fig. 16). 

 
 

 
Fig. 16. Correlation between measurements and radar information, spatial average. 

 

 

 
While radar-measured precipitation proves valuable in scenarios involving 

the passage of smaller, convective cells across the country, thus circumventing 
conventional meteorological stations, its suitability for climatological purposes is 
a subject of ongoing debate. Fig. 17 shows the average precipitation amount in 
July averaged over the period 2015–2022. This observation implies that the radar 
data greatly underestimates the measured precipitation totals on July. There can 
be several reasons why radar measurements might underestimate monthly 
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precipitation amounts, especially when considered for climatological purposes. 
Some common factors include: 

• Beam blockage: Radar beams are not perfectly straight, they follow the 
curvature of the Earth. Terrain features such as mountains or tall buildings 
can block the radar beam, leading to underestimation of precipitation in the 
shadowed areas. 

• Attenuation: Raindrops can absorb and scatter radar signals, especially at 
higher frequencies. 

• Z-R relationship: The radar reflects the intensity of precipitation, and this is 
converted to rainfall rates using a Z-R relationship (reflectivity to rainfall 
rate). However, the relationship can vary with temperature, type of 
precipitation, and other factors. If the chosen Z-R relationship is not 
appropriate for the conditions, it can lead to inaccuracies (Krajewski et al., 
2010). 
Our observation suggests that, currently, radar data is not a viable substitute 

for conventional measurements, thus rendering its utility limited in the context of 
climate-related applications. However, in cases where there is a strong correlation 
between radar information and measurements, they are definitely additional 
information compared to point measurements. In this article we also presented 
cases where radar information is an effective complement to measurements. 
Accurate precipitation estimates are needed for hazard warning, for insurance 
companies to settle claims, and of course for the public to justify the damage. 

 
 
 
 

 

Fig. 17. Representation of July radar precipitation totals (left) and measurements (right) for the 
averaged period 2015–2022. 
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4. Conclusion 

In conclusion, this study has demonstrated the significant impact of incorporating 
radar-derived background information in the interpolation of daily and hourly 
precipitation data, especially in regions prone to small but intense thunderstorms, 
such as supercells. The research focused on the MISH (Meteorological 
Interpolation based on Surface Homogenized Data) method and its adaptability in 
handling radar anomalies, including errors, missing data, and spurious 
measurements. 

The results from the analysis of three specific days in Hungary highlight the 
critical role of radar data in improving the accuracy of precipitation interpolation. 
In cases where traditional meteorological stations failed to capture the most 
intense and substantial precipitation events, radar data filled the gaps, providing a 
more complete and accurate picture. The incorporation of radar background 
information resulted in higher daily precipitation totals, and the correlation 
between observed data and radar background information was consistently strong. 

Furthermore, the study emphasizes the importance of integrating radar data 
into the interpolation process for hazard forecasting. Small but intense 
thunderstorms can lead to flash flooding and have adverse repercussions in 
societal and agricultural domains. Therefore, the combination of measurement 
data and radar products offers substantial advantages, enhancing accuracy in 
hazard forecasting and improving our understanding of spatial and temporal 
precipitation patterns. 

Although in the long term (e.g., 2015-2022 average) radar precipitation 
amounts cannot be used for climate purposes, as they significantly underestimate 
the amount of measured precipitation, in instances where a robust correlation 
exists between radar-derived information and measured values, the former can 
provide supplementary insights compared to conventional measurements. 

In future studies, it may be beneficial to improve the time resolution of the 
assessments. Instead of focusing solely on daily or hourly precipitation data, the 
inclusion of even shorter intervals, like 10- or 5-minute data, in precipitation 
interpolation along with radar information could be a valuable avenue for 
investigation. 

Overall, this research underscores the critical role of radar-derived 
background information in precipitation interpolation, offering valuable insights 
for meteorological and hydrological applications, ultimately contributing to better 
decision-making in managing and mitigating the impacts of extreme weather 
events. 
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