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Abstract⎯ Water scarcity and the climate change impacts on water components will 
drastically alter everybody's life. The Soil and Water Assessment Tool (SWAT) has been 
utilized in this study in combination with Sequential Uncertainty Fitting Program (SUFI-2) 
to simulate precipitation (P), temperature (T), blue water (BW), green water flow (GWF), 
and green water storage (GWS) in Kashafrood River Basin, Iran. The outputs of two 
Coupled Model Intercomparison Project Phase 5 (CMIP5) models (MIROC-ESM and 
GFDL-ESM2G) are selected for hydrological modeling under Representative 
Concentration Pathways (RCPs) of 4.5 and 8.5 and for the near future (2014-2042) and far 
future (2043-2100) periods compared to historical period (1995-2011). The results of 
RCPs, in comparison with the historical period, show that P and BW are increased and in 
GFDL-ESM2G are better than MIROC-ESM, while T tends to increase, and MIROC-ESM 
is better than GFDL-ESM2G. GWF, in all future periods (except in MIROC-ESM in near 
future and under RCP4.5 and 8.5) and in all RCPs tend to decrease, and the results of 
MIROC-ESM are better than those of GFDL-ESM2G in near future and are vice versa in 
far future. It is anticipated that GWS continues its historical trend in the future. 
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1. Introduction 

Climate change largely affects the hydrological cycle and availability of water 
resources (Pachauri et al., 2014). Its impact is more drastic in arid and semi-arid 
areas, and its effect on the accessibility of water resources to human has been focused 
in many studies. Studies show that climate change has an adverse impact on 
ecosystems and causes water crisis, both in arid and semi-arid areas (Falkenmark 
and Rockström, 2006), and millions of people would be dealing with the lack of 
uncontaminated water all over the world (Pereira et al., 2009). A comprehensive 
review of climate change is a necessary path for understanding and managing the 
limited freshwater resources in long-term. There is a dire need for climate change 
impact assessment in the realm of water resources to identify the changes in water 
usage patterns, especially in arid and semi-arid areas. Climate change is one of the 
main factors effecting the quantity and quality of water resources in a river basin. 
Climate models are developed in recent decades by scientists in order to study these 
effects. General Circulation Models (GCMs) are widely being applied in predicting 
various scenarios for the climatic change. The Intergovernmental Panel on Climate 
Change (IPCC) is responsible for gathering and reviewing the world wide climate 
models in the framework of the international climate change assessment report for 
policymakers and public users (IPCC, 1990). So far, IPCC has presented five distinct 
versions of GCM models including: First Assessment Report (FAR), Second 
Assessment Report (SAR), Third Assessment Report (TAR), Fourth Assessment 
Report (AR4), and Fifth Assessment Report (AR5) models. The IPCC AR5 has 
provided a novel approach of developing scenarios. These scenarios extend in the 
scope of possible radiative forcing scenarios called Representative Concentration 
Pathways (RCPs), whereas AR4 uses scenarios from the IPCC Special Report on 
Emissions Scenarios (SRES). The RCPs cover a broader extent of possibilities than 
the SRES marker scenarios employed in the modeling for the IPCC AR3 and AR4. 
Some RCPs account for mitigation and adaptation policies in opposition to SRES 
(see Chapter 9, IPCC, 2013). 

The Fifth Assessment Report (AR5) emission scenarios are founded on the 
different specifications, including technology level, social and economic status, 
and future policies that can lead to greenhouse gas emission and climate change 
to four new different paths. Later models were developed due to the concentration 
of greenhouse gases by considering radiative forcing and higher model resolution 
(Taylor et al., 2012). The Fifth Phase of the Coupled Model Intercomparison 
Project (CMIP5) including sixty-one climate change models, relies on the bases 
of new greenhouse gas concentration emission of RCP (Moss et al., 2010) and has 
started a few years ago under the international climate change agreement for AR5. 
CMIP5 has supplied a necessary basis from the compilation of AR5 and 
coordinated to be used in AR5, and allows for simulating, comparing, and 
synthesizing widespread hydro-climatic outputs from various GCMs (IPCC, 
2013; Taylor et al., 2012). 
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Freshwater cycle is classified into two different categories by involving the 
hydrological process and the storage type: green water (GW) and blue water 
(BW). The concepts of GW and BW were initially proposed by Falkenmark in 
1995 and then expanded by other researchers (Badou et al., 2018; Hoekstra, 2017; 
Veettil and Mishra, 2016; Zang et al., 2012; Faramarzi et al., 2009; Falkenmark 
and Rockström, 2006). Basically, human beings use BW as an important source 
of water availability in daily life. BW is a summation of surface runoff (originated 
from rivers, lakes, etc.) and groundwater aquifer recharge and used for irrigation 
purposes. Globally, irrigation water includes almost 70% of total human BW 
consumption (about 2500 km3/year). On the other hand, 90 percent of BW 
consumption (about 1200 to 1800 km3/year) belongs to agricultural BW 
consumption that transpires via the crops or evaporates from soils, vegetation, 
leaves, trees, or from water bodies. It is a misconception that agricultural water 
consumption is largely dependent on BW withdrawals, because about 80% of 
global croplands are rainfed, which consume the required water from precipitation 
that infiltrated into the unsaturated soil or stored in the soil texture (so-called green 
water, GW) (Mekonnen and Hoekstra, 2016). Food production and global 
ecosystems mainly depend on GW (a significant water source for terrestrial 
ecosystems), and an amount of about 5000 km3/year uses these water components 
as the only resource that supports rainfed agriculture on a global scale 
(Lathuillière et al., 2016; Zang et al., 2012; Falkenmark and Rockström, 2006). 
GW includes green water flow (GWF), which is the actual evapotranspiration of 
soil, water, and plants released into the atmosphere; and green water storage 
(GWS), which is the water volume stored in different soil layers at the end of a 
time period (Cuceloglu et al., 2017; Rodrigues et al., 2014; Falkenmark and 
Rockström, 2006). Although, BW is essential in irrigation water, but GWF and 
GWS resources are more than three times as large as BW consumption, and they 
play an essential role in crop production as well as in the supply of ecosystem 
services (Falkenmark, 1995). Thus, paying attention to BW and GW is very 
important in the management of watershed basins. In the past few years, many 
studies in the world have concentrated on BW and GW in the field of hydrology 
and water resources under climate change (Pandey et al., 2019; Afshar et al., 
2018; Badou et al., 2018; Shrestha et al., 2017; Zang et al., 2012; Faramarzi et 
al., 2009) and on the importance of these components in different watershed 
basins for strategic decision-making (Schyns et al., 2019; Veettil and Mishra, 
2016; Zang et al., 2012). 

Various physically-based integrated distribution models have extended for 
analysis and management of catchment, including: Hydrologic Simulation 
Program-Fortran (HSPF), Agricultural Non-Productive Source (AGNPS) model, 
Erosion Productivity Impact Calculator (EPIC), Hydrology Laboratory-Research 
Distributed Hydrologic Model (HL-RDHM), Water Erosion Prediction Project 
(WEPP), Chemical Runoff Erosion from Agricultural Management System 
(CREAMS), and Soil and Water Assessment Tools (SWAT). SWAT was 
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developed and employed in most studies in order to determine the effects of 
climate change in the quantity and spatiotemporal distribution of BW and GW, 
and also the impacts of human activity on agricultural yield, chemical, and stream 
flow in a large scale basin (Pandey et al., 2019; Dadfar et al., 2019; Fazeli 
Farsani et al., 2019; Masud et al., 2018; Afshar and Hassanzadeh, 2017; Veettil 
and Mishra, 2016; Besharat et al., 2015; Faramarzi et al., 2009, 2013;). The 
Calibration and Uncertainty Procedures (SWAT-CUP) computer program, which 
connects to SWAT model, is applied in order to investigate the sensitivity 
analysis, the model parameters, and the calibration and validation processes 
(Hassanzadeh et al., 2019; Shivhare et al., 2018; Afshar et al., 2018; Uniyal et 
al., 2015; Abbaspour et al., 2007). SWAT-CUP program also contains four 
algorithms to perform these processes, including a Monte Carlo Markov Chain 
(MCMC) algorithm, Generalized Likelihood Uncertainty Estimation (GLUE), 
Parameter Solution (ParaSol), and Sequential Uncertainty Fitting program (SUFI-2). 
Among them, SUFI-2 has extensively been employed in many parts of the world 
to optimize the parameters of the SWAT model, and it is found to be quite efficient 
in large scale models in comparison with another algorithms of SWAT-CUP 
program (Hassanzadeh et al., 2019; Shivhare et al., 2018; Li et al., 2017; 
Abbaspour et al., 2007).  

Most countries in the Middle East such as Iran are located in arid or semi-arid 
regions with low precipitation and high temperature. The climate change in Iran, like 
in other similar climates, is recognized as a challenging subject, and its negative 
impacts on water resources can also affect the environmental and socio-economic 
issues, and mainly the agricultural sector. The Kashafrood River Basin (KRB), in the 
northeast part of Iran with a wide range of climate conditions, is expected to face 
changes in both water quantity and quality in future time periods. On the other hand, 
cultivation is carried out in irrigated agricultural (28.56%) and rainfed (15.55%) 
forms in the majority portion of KRB (about 44.11% of the total land use). Given the 
strategic importance of KRB as the only water supply of northeast Iran, not much 
work (except for the research done by Afshar et al. (2017, 2018)) has been done to 
study the spatial and temporal changes of BW, GWF, and GWS (and even rainfall 
and temperature) in the basin under future climate change scenarios.  

Beyond the abovementioned facts, the current study consists of the following 
main objectives that are considered as innovation of the article: (1) identification of 
sensitive parameters of the SWAT model via the Regional Sensitivity Analysis 
(RSA) method based on the Latin hypercube sampling (LHS) theory and the 
Kolmogorov-Smirnov (K-S) test, (2) survey, comparison, and discussion the spatial 
and temporal variations of water resources components (e.g., blue water, green 
water flow, and green water storage) in the KRB during a period of 106 years by 
using MIROC-ESM and GFDL-ESM2G models of CMIP5 under two RCPs (4.5 
and 8.5). In addition, we explain the way that the water resources components have 
changed in the basin levels over three time periods from 1995 to 2100 (historical: 
1995–2011, near future: 2014–2042, and far future: 2043–2100). The impact of 
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climate parameters, such as the influence of precipitation and temperature on the 
availability of water resources in the basin, has also been investigated, so the third 
main objective of this study is the investigation of hydro-climatic conditions in 
sub-basins that contain hydraulic structures such as dams’ reservoirs (Torogh and 
Kardeh dams) in them by MIROC-ESM and GFDL-ESM2G models and two 
RCPs (4.5 and 8.5). 

2. Materials and methods 

2.1. Study area 

The Kashafrood River Basin, KRB is located in the northeastern part of Iran with 
an area of 16870 square kilometers, which is the largest basin in the Khorasan 
Razavi Province and located between latitudes of 35° 35' to 37° 07' N and 
longitudes 58° 15' to 61° 13' E. The average altitude of the basin is 1846 m above 
the sea level, and the eastern part is geographically low, while the western part is 
high. The KRB has a cold and semi-arid climate with low annual rainfall and high 
evapotranspiration due to the topographic conditions (Afshar et al., 2017). The 
mean annual precipitation for this basin is about 340 mm, and the highest rainfall 
occurs between January and May according to the recorded climate data (Afshar 
et al., 2017). The mean annual minimum and maximum temperatures during 
1992–2005 were 7.1 °C and 20.6 °C, respectively (Afshar et al., 2017). Torogh 
and Kardeh dams lie in the south and north of Mashhad, respectively, as the most 
populated cities in this area, providing water for agricultural and drinking sectors 
(Fig. 1). The topography of KRB, and the location of gauging and meteorological 
stations are depicted in Fig. 1.  
 

 
Fig. 1. DEM (digital elevation model) and the location of gauging and meteorological 
stations in KRB. 
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2.2. SWAT model, required data, and model set up 

SWAT, as a continuous-term, semi-distributed, process-based model, is 
developed to assess alternative management strategies for short- and long-term 
decisions in large river basins (Arnold et al., 2012) by policymakers. SWAT 
model has been widely applied at regional (Rahimpour et al., 2020; Hassanzadeh 
et al., 2019; Samuels et al., 2018; Huang et al., 2017; Rodrigues et al., 2014), 
national (Liu et al., 2017; Zhu et al., 2015; Faramarzi et al., 2009) and continental 
scales (Giles et al., 2019; Faramarzi et al., 2013). The basin of this model is 
classified into multiple sub-basins, and then the soil and topographical features 
are classified into hydrological response units (HRUs) according to the 
combination of land uses (Afshar et al., 2018; Cuceloglu et al., 2017; Arnold et 
al., 2012).  
The digital elevation model (DEM) for this research is extracted from topographic 
maps of the National Geographic Center (NGC) of Iran. The land-use map is 
obtained from the Indian Remote Sensing (IRS-1C) satellite images of 2002 with 
a spatial resolution of 23.6 meters. According to the satellite images of KRB and 
IRS-1C, KRB was classified into seven land-use and land-cover classes (Fig. 2a). 
Pasture (50.91%), generic agricultural (28.56%), and winter wheat (15.55%) 
lands form the majority portion of KRB and play fundamental role in the residents' 
economy. The studied watershed also consists of forest-evergreen (3.03%), urban 
(1.42%), range-brush, and water (0.5%) areas. The soil map was constructed by 
the Range and Watershed Department (RWD) and Agriculture Jehad 
Organization (AJO) of Khorasan Razavi Province (KRP), which is prepared using 
Landsat TM satellite with a resolution of 30 meters and classified into 19 soil 
types (Fig. 2b). Soil data, including rock fragment, silty sand, and clay contents, 
soil electrical conductivity (ECe), organic carbon content, water content, bulk 
density, porosity, soil hydrologic groups, and saturated hydraulic conductivity 
(Ks) were obtained from the soil map (which was divided into nineteen classes).  
 
 
 

 
Fig. 2. Input maps to SWAT model (a. land-use and b. soil map) in KRB. 
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The Iran Meteorological Organization (IMO) developed the climate database 
of precipitation and temperature stations, located within the watershed (during 
1992–2013). Monthly river discharge data of 5 stations, needed for the 
calibration/validation process, were recieved from the Iran Water Resource 
Management Company (IWRCM). Although, there are more flow stations located 
in this area, only five stations (Table 1) were found to be suitable in this work. 
The five hydrometric and rain gauge stations were established by the IWRCM in 
1978, and they are already under the control of IWRCM. These stations are flood 
alarming stations, which are recently equipped with several instruments such as 
limnograph, data logger, teleferic bridge and real-time data transmitters. 

 
 
 
 

Table 1. Overview of hydrometric multi-site stations in KRB 

Stations Symbol Altitude Latitude Longitude 
Mean monthly 

flow (m3/s) 

Sar Asiab Shandiz SARASSHA 1249 m 36.40 59.34 0.51 

Zire Band Golestan ZIRBAGOL 1164 m 36.32 59.43 0.71 

Golestan Jaghargh GOLHAGHR 1213 m 36.31 59.40 0.19 

Hesar Dehbar HESDEHB 1249 m 36.31 59.04 0.29 

Kartian KARTIAN 1232 m 36.17 59.51 0.36 

 
 

 
 

The model setup in this study is carried out by the ArcSWAT 2012 interface, 
and the basin is divided into 217 sub-basins and subsequently divided into 635 
hydrologic response units (HRUs) to evaluate the condition of GW and BW in 
small scales. Generally, these HRUs were determined in the model with threshold 
values of 20, 20, and 10 percent for land-use, soil, and slope, respectively. We 
concluded that small polygons with an area of less than 25 hectares could be 
integrated into larger polygons in the vicinity by considering the overlapping 
maps, based on their scale, and defining these thresholds. 

2.3. Sensitivity, calibration, and uncertainty analysis 

Twenty parameters were considered in the sensitivity analysis to enhance the 
understanding of sensitive parameters' impacts on the stream flow (Table 2). 
Predefined or prior range of SWAT parameters were mostly adopted from 
literature (Zadeh et al., 2017; Nossent and Bauwens, 2012; Abbaspour et al., 
2007), which may be considered as constant ranges in the majority of cases.  
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Table 2. Parameters used for the sensitivity analysis 

Parameters Group process Explanations 
Prior 

ranges 

SFTMP 

Snow 

Snowfall temperature -5 to 5 

SMTMP Snow melt base temperature -5 to 5 

SMFMN Melt factor for snow on December 21 0 to 10 

SMFMX Melt factor for snow on June 21 0 to 10 

TIMP Snow pack temperature lag factor 0.01 to 1 

SOL_K 

Soil water 

Saturated hydraulic conductivity -0.8 to 0.8 

SOL_BD Moist bulk density -0.3 to 0.3 

SOL_AWC Available water capacity of the soil layer -0.3 to 0.3 

SOL_ALB Moist soil albedo -0.5 to 0.5 

GW_DELAY 

Groundwater 

Groundwater delay time 0 to 400 

GW_REVAP Groundwater “revap” coefficient 0.02 to 0.2 

GWQMN 
Threshold depth of water in shallow aquifer 
for return flow 

0 to 500 

SHALLST Initial depth of water in the shallow aquifer 0 to 1000 

ALPHA_BF Base-flow alpha factor 0 to 1 

RCHRG_DP Deep aquifer percolation fraction 0 to 1 

REVAPMN 
Threshold depth of water in shallow aquifer 
for “revap” 

0 to 100 

EPCO 

Evapotranspiration 

Plant uptake compensation factor 0.01 to 1 

ESCO Soil evaporation compensation factor 0.01 to 1 

OV_N Manning’s ‘n’ value for overland flow 0 to 0.08 

CH_K2 
Channel flow 

Effective hydraulic conductivity in the main 
channel 

0 to 150 

CH_N2 Manning's “n” value for the main channel 0 to 0.3 

PCPMM 

Precipitation 

Average or mean total monthly precipitation -0.5 to 0.5 

PCPSKW 
Skew coefficient for daily precipitation in 
month 

-0.5 to 0.5 

PCPSTD 
Standard deviation for daily precipitation in 
month 

-0.5 to 0.5 

SURLAG 

Overland flow 

Surface runoff lag coefficient 1 to 24 

MSK_CO1 
Calibration coefficient used to control impact 
of the storage time constant for normal flow 

0 to 10 

MSK_CO2 
Calibration coefficient used to control impact 
of the storage time constant for low flow 

0 to 10 

CN2 Runoff generation Curve number -0.4 to 0.4 

SLSUBBSN Geomorphology Average slope length (m) 10 to 150 
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The aim of the research is to apply a comprehensive sensitivity analysis 
method based on the Latin hypercube sampling (LHS) theory and the 
Kolmogorov-Smirnov (K-S) test called generalized sensitivity analysis (GSA, 
also referred as regionalized sensitivity analysis, RSA) in sensitivity evaluation 
of SWAT model parameters. The main objective of sensitivity analysis is to 
understand how different components of a model (parameters) affect the outputs 
of the model, and its results are very effective for model calibration and model 
uncertainty analysis (Sobol, 2001). Additionally, sensitivity analysis also allows 
ranking the most important variables influencing the simulated process. One of 
the most widely used types of comprehensive sensitivity analysis methods is the 
regional sensitivity analysis (RSA) method (Freer et al., 1996). The RSA method 
is sampled from the parametric space of model via the Latin hypercube (LH) 
random sampling method. Therefore, the set of different parameters is randomly 
generated and then the corresponding model outputs are evaluated after the 
execution of the model. The Latin hypercube method is in fact the same as the 
Monte Carlo (MC) sampling method with the difference of that sampling is done 
at equal distances from the logical range of each variable, which increases the 
accuracy of MC simulation (Mckay et al., 1979). MC methods are numerical for 
generating random variables in such a way to maintain the properties of 
distribution function governing them. The set of parameters produced based on 
the values of their corresponding objective function (a criterion of the difference 
between the model output and the measured values) are arranged and divided in 
to two categories of good (X1) and bad (X2) parameters after being sampled from 
the parameter space. The cumulative distribution functions (CDFs) of the model 
parameters are then compared with each other via the Kolmogorov-Smirnov test: 

 
 KS = max(|ݔ)1ܨሻ −  (1) ,(|(ݔ)2ܨ

 

where, F1 and F2 are generalized distribution functions of the first and second 
parameter sets, respectively. Besides, the higher the KS in this test, the greater the 
probability of two distributions being different that indicates, that the 
corresponding parameter is more sensitive. The Nash-Sutcliffe (NS) criterion is 
also used as the objective function. 

The SWAT model, based on monthly observed runoff at the mentioned 
stations, was calibrated and validated using the SUFI-2 algorithm. However, some 
vital details are provided below. 

The SUFI-2 algorithm, as a one-at-a-time method for calibration and validation 
analysis in the SWAT-CUP program, provides a narrow range of measured data 
within 95% prediction uncertainty (95PPU) by recognizing those parameters 
contributing to the reduction of total uncertainty in the output data (Van Griensven 
et al., 2006). Four indices, applied for quantifying the reliability of calibration and 
validation performance, are the Nash and Sutcliffe (NS) efficiency, coefficient of 
determination (R2), P, and R-factor (Abbaspour et al., 2007): 
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• The NS efficiency criterion, as a performance metric, demonstrates the 
goodness-of-fit between the simulated and observed data (Nash and Sutcliffe, 
1970). The formula is given as follows: 

 

 ܰܵ = 1− ∑ (ை೔ିௌ೔)మ೔ಿసభ∑ (ை೔ିைത)మ೔ಿసభ  , (2) 

 
where N is the number of observed data, Oi and Si are the observed and 
simulated sunoff data in step i. 

• The P-factor, indicating the observed data proportion identified by the 
prediction uncertainty of 95%, is frequently stated as 95PPU (Abbaspour, 
2007). The R-factor correspounds to the average thickness of the 95PPU 
band (within the upper and lower boundaries) divided by the standard 
deviation of the associated measured variable (Abbaspour, 2007):  

 

 ܴ − ݎ݋ݐ݂ܿܽ = ∑ ൫௒ೆ ೛೛೐ೝି௒ಽ೚ೢ೐ೝ൯೔೔ಿసభ ே	ఙೣ  , (3) 

 
where ௎ܻ௣௣௘௥ and ௅ܻ௢௪௘௥ are the upper and lower limits of the 95PPU, ߪ௫ 
is the standard deviation of the observed data, and N is the number of the 
observed data. 

• The coefficient of determination (R2) represents the proportion of total 
variance in the observed data that can be explained by the model: 

 

 ܴଶ = ൜ ∑ (ை೔ିைത)∗	(ௌ೔ିௌ̅)೔ಿసభൣ∑ (ை೔ିைത)మ೔ಿసభ ൧బ.ఱ∗	ൣ∑ (ௌ೔ିௌ̅)మ೔ಿసభ ൧బ.ఱൠଶ,  (4) 

 
where N, YLower, YUpper, and σx are the total number of observed data, the lower 
and upper limits of the 95PPU, and the standard deviation of observed data, 
respectively. Oi and Si are the observed and simulated runoff data in step i, 
and Ō and ܵ̅ are the mean observed and simulated runoff data. P-factor and 
R2 range from 0 to 100, and R-factor and NS coefficient range from 0 to ∞ 
and -∞ to 1, respectively. When the P-factor and R2 are close to 100 percent, 
R-factor is close to 0, and the NS coefficient is between 0.75 to 1. The best 
fit among simulated and observed data is obtained during calibration and 
uncertainty analysis.  
The goodness-of-fit is calculated between the measured and simulated runoff 

with NS, R2, P, and R criteria in the calibration process, after each iteration  
(500 runs) with twenty parameters and NS as a likelihood function for each of the 
5 runoff stations, to conduct calibration until the performance criteria were 
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satisfied. If these criteria are satisfied in all stations, the calibration process would 
be finished and parameter ranges would be applied to investigation in the 
validation process and to extract BW, GWF, and GWS components. Otherwise, 
new parameter ranges are proposed for the next iteration. The final upper and 
lower bounds of the parameters as well as the fitted values of parameters were 
obtained after one or more iterations. Time periods from 1992 to 2011 were used 
for calibration (2001–2011) and validation (1995–2000) processes. Also, the first 
three years (1992–1995) were applied to warm-up the model. The calibrated 
parameter ranges were used without any change with the same number of 
simulations as utilized for calibration in the validation process. The efficiency 
measures were computed during the calibration process, as well. Details of the 
procedures for validation, calibration, sensitivity and uncertainty analysis can be 
found in the study conducted by Afshar et al. (2018). 

2.4. Climate change models and scenarios 

Fourteen climate change models, among the sixty one models of CMIP5, are used 
frequently to simulate future climate conditions in Asia (Afshar et al., 2017; 
Woldemeskel et al., 2016; Salzmann et al., 2014; Jiang and Tian, 2013; 
Chaturvedi et al., 2012). Their outputs of GCMs are appropriate for simulation of 
climatic data at a meteorological station in a regional location using high-
resolution GCMs due to the downscaling process (Duan and Mei, 2014). In this 
research, the monthly climate data (precipitation and temperature) of CMIP5 
models for different time periods were extracted from the CMIP3 and CMIP5 
Climate and Hydrology Projections website (https://gdo-dcp.ucllnl.org/). These 
data are downscaled using the bias-correction spatial disaggregation (BCSD) 
method (for more details, refer to Afshar et al. (2017)). 

The earth system models (ESMs) are frequently applied as coupled climate 
models to simulate biogeochemical components. The leading institutions in the 
climate field also establish them. The MIROC-ESM was developed by the Japan 
Agency for Marine-Earth Science and Technology (JAMSTEC) in cooperation 
with the University of Tokyo and the National Institute for Environmental Studies 
(NIES) (Nozawa et al., 2007). The latest version of the mentioned model has some 
limited functions due to the uncertainty in coupling processes, and only includes 
the impact of vegetation changes on dust emission and impact of deposition of dust 
and black carbon on snow albedo (Watanabe et al., 2011). On the other hand, the 
Geophysical Fluid Dynamics Laboratory (GFDL) of the National Oceanic and 
Atmospheric Administration (NOAA) released their new ocean climate model in 
2012, which is based on density layers to understand the impact of the earth’s 
biogeochemical cycles including human activities in collaborating with the climate 
system (Dunne et al., 2013, 2012). The GFDL also developed the Geophysical 
Fluid Dynamics Laboratory Earth System Model with the Generalized Ocean Layer 
Dynamics component (GFDL-ESM2G) model (Dunne et al., 2013, 2012). The 
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GFDL-ESM2G model is a fully‐coupled Atmosphere‐Ocean General Circulation 
Model (AOGCM) with an interactive closed carbon cycle and does not exhibit a 
clear La Niña–like response. Recently, both models have been applied at different 
scales and locations (Samuels et al., 2018; Sylla et al., 2015). The longitude (and 
latitude) resolution of MIROC-ESM is about 2.8125° (and 2.796°) and in the 
GFDL-ESM2G model this resolution is about 2.5000° (and 2.0225°).  

According to Afshar et al. (2017), MIROC-ESM and GFDL-ESM2G models 
were selected in this study among 14 climate models based on the evaluation criteria, 
i.e., the Nash-Sutcliffe (NS) efficiency coefficient, the percent of bias (PBIAS), the 
coefficient of determination (R2), the ratio of the root mean square error to the 
standard deviation (RSR) (Table 3), and the performance rating of simulation model 
(Moriasi et al., 2007). Both models showed the highest agreement with observational 
data in KRB based on the evaluation criteria. (For more explanation about the 
methodology of selecting these two CMIP5 models refer to Afshar et al., 2017). 
 
 
 
 

Table 3. Reported performance rating of evaluation criteria for the  outputs of 14 CMIP5 
models (Afshar et al., 2017) 

Rating based on 
(Moriasi et al,. 

2007) 

Criteria Evaluation 

NS PBIAS (%) R2 RSR 

Very good (VG) 0.75 < NS ≤ 1.00     PBIAS ≤ ±10.00 0.866 ≤ R2 < 1.00   0 ≤ RSR ≤ 0.5 

Good (G) 0.65 < NS ≤ 0.75 ±10 ≤ PBIAS < ±15 0.733 ≤ R2 < 0.866 0.5 < RSR ≤ 0.6 

Satisfactory (S) 0.50 < NS ≤ 0.65 ±15 ≤ PBIAS < ±25  0.60 ≤ R2 < 0.733 0.6 < RSR ≤ 0.7 

Unsatisfactory (US)          NS < 0.50           PBIAS ≥ ±25         R2 < 0.6          RSR > 0.7 

Models Criteria values 

HadGEM2-ES 0.57 (S) -17.15 (S) 0.69 (S) 0.73 (US) 

IPSL-CM5A-LR 0.71 (G) -15.65 (S) 0.81 (G) 0.61 (S) 

NorESM1-M 0.88 (VG) -4.74 (VG) 0.92 (VG) 0.51 (G) 

BCC-CSM1.1 0.62 (S) -11.01 (G) 0.74 (G) 0.67 (S) 

CCSM4 0.43 (US) -28.15 (US) 0.52 (US) 0.79 (US) 

MIROC-ESM 0.95 (VG) -2.88 (VG) 0.97 (VG) 0.33 (VG) 

CSIRO-MK3.6.0 0.51 (S) -27.44 (US) 0.60 (S) 0.71 (US) 

GFDL-ESM2M 0.66 (G) -10.4 (G) 0.79 (G) 0.64 (S) 

GFDL-ESM2G 0.92 (VG) -2.93 (VG) 0.94 (VG) 0.37 (VG) 

CESM1(CAM5) 0.55 (S) -26.36 (US) 0.63 (S) 0.68 (S) 

GFDL-CM3 0.48 (US) -26.03 (US) 0.54 (US) 0.74 (US) 
MIROC-ESM-
CHEM 

0.78 (VG) -5.25 (VG) 0.71 (S) 0.66 (S) 

IPSL-CM5A-MR 0.85 (VG) -4.96 (VG) 0.85 (G) 0.46 (VG) 

MIROC5 0.60 (S) -25.75 (US) 0.71 (S) 0.68 (S) 
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The CMIP5 model outputs include four representative concentration 
pathways (RCPs) of new emission scenarios (such as RCP2.6, 4.5, 6.0, and 8.5). 
RCPs are based on the emission forcing level until 2100 (see Chapter 11, Sections 
11.2 and 11.3, IPCC, 2013). The radiative forcing is the extra heat in the lower 
atmosphere that will be preserved by means of additional greenhouse gases.  

In this study, RCP8.5 is applied as a high baseline emission scenario and the 
highest amount of greenhouse gas concentration by the end of the 21st century 
(Van Vuuren et al., 2011a). The RCP8.5 radiative forcing pathway consistently 
rises (at a target of 8.5 W/m2 in 2100), while enhancing the residual circulation 
furthermore and increases the level of greenhouse gases significantly (Riahi et al., 
2011). Consumption of oil and coal, increasing the agricultural lands, and 
decreasing the forest area with current trends play an essential role in providing 
energy, and the population of earth will reach to 12 billion until the 22 century 
(Van Vuuren et al., 2011a). Therefore, the highest possible changes in climate will 
happen in this scenario.  

Besides, we applied RCP4.5 as an intermediate pathway with no exceedance 
from the projected level of long-term radiative forcing. The emission will reach 
to the highest level in this scenario in the middle of the century, then decline in 
30 years, then it stabilizes (Smith and Wigley, 2006). Renewable and nuclear 
powers play a greater role in this scenario, in comparison with RCP8.5 (Van 
Vuuren et al., 2011a). The RCP6.0 is similar to RCP4.5, but is not applied in this 
study due to a variety of technologies and strategies employed in the greenhouse 
gas emissions reduction (Hijioka et al., 2008).  

Considering the urge for developing  realistic climate change scenarios to 
make the planning of adaptation measures easier, we do not contribute RCP2.6 in 
the climate model group because it contains negative emissions of energy use in 
the second half of the 21st century, and one of its key assumptions is the full 
involvement of all countries worldwide in the short term (Van Vuuren et al., 
2011b). Therefore, the best selections in this research are RCP4.5 (the medium 
stabilization scenario) and RCP8.5 (the high emission scenario) that encompass 
the whole spectrum of radiative forcing arising from RCP4.5, RCP6.0, and 
RCP8.5. 

3. Results and discussion 

3.1. Sensitivity, calibration, and validation 

The most sensitive parameters with their assigned rank, based on the 
Kolmogorov-Smirnov (K-S) test values that are illustrated in Fig. 3, shows that 
20 parameters affect the results of runoff simulation and play an essential role in 
the calibration of SWAT model. Among these parameters, ESCO, GW_REVAP, 
SOL_AWC, and SFTMP were the most sensitive parameters for outflow. 
Although the RCHRG_DP, SOL_K, and SMTMP parameters seemed to be less 
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sensitive, as indicated by their K-S test (Fig. 3), these parameters have considerably 
contributed to increase the model calibration results for river discharges. The fitted 
values of parameters, as well as the final lower and upper bounds of parameters are 
shown after a total of 3000 runs (six iterations) in Table 4. Results of calibration 
and validation from R2, NS, R, and P indices are represented in Table 5. More than 
60% of the values of runoff data at all the stations can be bracketed on average in 
calibration (validation) by 95PPU. NS values were greater than 0.60 (0.64) in the 
calibration (validation) period, and R2 was greater than 0.63 (0.65) at all the 
stations. Accordingly, the calibrated model can be applied with confidence to the 
set of optimized parameters, and the validation period demonstrated better 
agreement in respect of the calibration period (Table 5). 

 
 
 

 

Fig. 3. Kolmogorov–Smirnov values (KS) for 20 sensitivity parameters. 
 
 
 

Table 4. Sensitive parameters, posterior ranges, and fitted values (Afshar et al., 2018) 

Parameters 
Range of parameter Fitted 

value 
Parameters 

Range of parameter Fitted 
value Minimum Maximum Minimum Maximum 

CN2 0.197 0.281 0.23 ESCO 0.41 0.501 0.50 

GW_DELAY 132.7 159 133.55 SLSUBBSN 96.5 109.5 99.54 

ALPHA_BF 0 0.08 0.042 CH_N2 0.102 0.13 0.12 

SOL_AWC 0.21 0.28 0.28 CH_K2 101.5 114 101.72 

SOL_K 0.15 0.32 -0.16 SFTMP -1.0 -1.81 -1.45 

SOL_BD 0.095 0.167 -0.11 SMTMP -0.95 -1.92 -1.70 

GW_REVAP 0.085 0.115 0.11 SMFMN 7.5 8.95 8.16 

SHALLST 460.8 510.5 485.30 TIMP 0.50 0.70 0.51 

RCHRG_DP 0.229 0.32 0.24 SURLAG 9.60 12.2 10.22 

EPCO 0.29 0.41 0.29 PCPMM -0.177 -0.325 -0.25 
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Table 5. Monthly runoff calibration and validation results at five stations (Afshar et al., 
2018) 

Stations 
Calibration period  Validation period ࡾ૛ NS R-factor P-factor  ࡾ૛ NS R-factor P-factor 

SARASSHA 0.72 0.71 1.10 0.57  0.65 0.64 0.96 0.56 

ZIRBAGOL 0.66 0.65 1.29 0.58  0.84 0.83 0.92 0.65 

GOLJAGHR 0.66 0.64 0.95 0.63  0.74 0.74 0.81 0.64 

HESDEHB 0.63 0.60 0.92 0.74  0.81 0.81 0.75 0.78 

KARTIAN 0.68 0.63 0.90 0.66  0.87 0.87 0.58 0.67 
 
 

 

3.2. Spatial and temporal changes of water resources components 

We decided to divide future periods into two different sections, including near-
term perspective (2014–2042) and far-term perspective (2043–2100) with the 
historical period (1992–2011) in order to have a better comparison of precipitation 
(P), temperature (T), blue water (BW), green water flow (GWF), and green water 
storage (GWS) in MIROC-ESM and GFDL-ESM2G models in this work. The 
concentrations of CO2 for RCP4.5 and 8.5 are about 431 and 444 ppm in the near 
future and are about 533 and 811 ppm in the far future, which were used in the 
SWAT model. 

The spatial distribution of the average values of P, T, BW, GWF, and GWS 
for the historical period is shown in Fig. 4 and the results show that the amounts 
of GWF (Fig. 4d) and BW (Fig. 4c) were higher in the upstream than those in the 
downstream for this time period due to the differences in precipitation patterns 
(Pandey et al., 2019; Fazeli Farsani et al., 2019; Zuo et al., 2015). 

 
 
 

  
Fig. 4. Spatial pattern of mean annual water components over the KRB during the historical 
period. 
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Fig. 5 shows the simulation results of precipitation (P) in both models and 
scenarios. According to Fig. 5, the spatial variations of P in KRB for both RCP 
scenarios and periods, under the two models, show the same pattern. The highest 
and lowest values of this component occured in the northern and southeastern 
parts of the basin, respectively. The GFDL-ESM2G model provided higher rate 
of P than MIROC-ESM by comparing the results of both models in the future 
periods. The highest value of the mentioned component was observed in the 
GFDL-ESM2G model in the near future period under RCP 4.5 (Fig. 5a), while 
the MIROC-ESM model resulted in the lowest value of mean annual P in this area 
in the far future period (Fig. 5f) under the same RCP. 

 
 

  
Fig. 5. Variability of precipitation, simulated under different scenarios and models for near 
and far future in KRB. 
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Fig. 6 shows the simulation results of temperature (T) in both scenarios and 
models. It is obvious that T will be increased by transition from near-term to far-
term projection, and the spatial pattern shows that northern and high-altitude areas 
in the northeast and southwest would have the lowest mean annual temperature. 
T in RCP8.5 (Figs.  6c, d, g, and h) is higher than in RCP4.5 (Figs. 6a, b, d, and 
f), due to the high emission of greenhouse gases and the increase in CO2 
concentration. The MIROC-ESM model simulated higher T than the other model, 
and the mean annual T is estimated to increase about 3 °C in the far future period 
in MIROC-ESM under RCP8.5 (Fig. 6h). 

 
 

  
Fig. 6. Variability of temperature, simulated under different scenarios and models during 
the near and far future intervals in KRB. 
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The results of BW simulation are shown in Fig. 7 for KRB under different 
scenarios and models. Generally, BW decreases from northwest to southeast in the 
watershed. The simulations for both models and scenarios show a decreasing trend 
by passing from the near-term to far-term periods. The decrease of BW in the 
MIROC-ESM is higher than in the other model. There is no significant variation in 
the spatial distribution of P and BW according to the results of P (Figs. 5a-h) and 
the direct relationship between these two components. Furthermore, the MIROC-
ESM model estimated both components higher than the GFDL-ESM2G in the 
future periods. The highest (lowest) mean annual BW will occur under RCP4.5 in 
GFDL-ESM2G in the near future (in MIROC-ESM in the far future) period 
(Figs. 7a, f). It should be noted that the surface runoff is a major part of BW 
(Pandey et al., 2019; Fazeli Farsani et al., 2019). BW is a renewable resource and 
potentially necessary for the agriculture sector in this area. Therefore, the climate 
change will have a significant impact on agricultural activities in the study area. 

  
Fig. 7. Variability of BW, simulated under different scenarios and models during the near 
and far future intervals in KRB. 
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Fig. 8 shows the average values of GWF during the near and far future periods 
under two scenarios and models. As temperature increases in all of our calculations 
(Figs. 6a-h), the actual evapotranspiration expected to be increased if there is enough 
water. The value of GWF in the north and northwest (upstream) parts of the KRB is 
greater than that in the south and southeast parts of the study area. The lack of 
sufficient water resources in south and southeastern parts of the basin, the vegetation, 
and land use are the reasons of spatial distribution. The simulations show that the 
mean annual GWF slightly decreases under both scenarios and models by passing 
from the near to far period, due to the reduction of P. According to calculation results, 
GFDL-ESM2G simulates GWF slightly less than the other model throughout the 
near future. However, this parameter has been simulated higher than that by the 
MIROC-ESM during the far future by the mentioned model. 

 

  
Fig. 8. Variability of GWF, simulated under different scenarios and models during the near 
and far future intervals in KRB. 
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GWS is an important water source that sustains the earth's ecosystems, 
especially crops, which is a vital part of human food (Schyns et al., 2015). Fig. 9 
shows the results of simulations for the average annual GWS in KRB by different 
models and under different scenarios. The highest and lowest mean annuals of 
this component are projected in MIROC-ESM in the near and far future periods 
under RCP4.5 (Figs. 9b and f). In addition, GWS by the MIROC-ESM under 
RCP4.5 severely reduced by transition from the near to far period (Figs. 9b and 
f), while it will slightly increase under RCP8.5 (Figs. 9d and h). However, GFDL-
ESM2G shows a completely different trend. For instance, the value of GWS will 
decrease and increase by passing from the near to far future under RCP4.5 and 
RCP8.5, respectively. These findings are in a noble agreement with Pandey et al. 
(2019), and with Fazeli Farsani et al. (2019), Faramarzi et al. (2009), Abbaspour 
et al. (2009), that simulated P, BW, and GW values at the watershed scale. 

  
Fig. 9. Variability of GWS, simulated under different scenarios and models during the near 
and far future intervals in KRB. 
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The main reason for abrupt variations in the components of water resources 
(such as GWS and GWF) among the sub-basins is due to changes in the texture 
and soil characteristics and water holding capacity in the sub-basins (19 profiles 
defined in the present research) as well as to their effect on the evapotranspiration 
parameters in the hydrologic model (SWAT). 

The mean annual water components are shown in Table 6 in both models and 
RCPs and for two future periods regarding the historical period. At the same time, 
all the following results are compared with the historical time period. The 
obtained results show that BW and P increase under both scenarios, models, and 
future intervals compared with the historical period, and the values of BW and P, 
simulated by the GFDL-ESM2G model in KRB, are higher than those simulated 
by the other model. P and T will rise during the future intervals in both models in 
comparison with the historical period.  

 
 
Table 6. Mean annual values of water components during historical and future intervals 
(mm/yr) 

Hydro-
climatic 

component 

Historica
l period 

MIROC-ESM  GFDL-ESM2G 
Near Far  Near Far 

4.5 8.5 4.5 8.5  4.5 8.5 4.5 8.5 

P 250.41 319.57 372.24 269.81 297.69  442.32 402.33 390.08 348.26 

T 15.30 15.72 15.83 16.70 18.32  15.44 15.61 16.60 17.67 

BW 37.57 98.68 147.58 70.69 97.11  219.64 181.61 171.5 142.63 

GWF 203.40 204.94 206.45 187.02 187.27  201.95 203.32 200.23 190.10 

GWS 52.22 60.53 45.06 35.14 48.17  56.63 48.05 49.60 53.53 

P: precipitation (mm/year), T: temperature (°C), BW: blue water (mm/year),  
GWF: green water flow (mm/year), GWS: green water storage (mm/year) 

 
 
Calculations show that GWF only increases in the near future by the MIROC-

ESM model considering the historical period. The increase of this component is 
about 0.75–1.49%, while it will be decreased by 8.05% under different conditions. 
P, BW, and GWF were higher during the near future in similar RCPs than those in 
the far future. However, the T component in similar RCPs shows an inverse result. 
GWF shows negative and positive trends by moving from the historical to near and 
far future, respectively. On the other hand, using two GCMs leads to differences 
between results. The findings of studies by Pandey et al. (2019), Xue et al. (2017), 
and Su et al. (2016), also support and confirm these results. From the results of Table 
6, it could be deduced that P will rise up by 7.2–43.4%, BW will increase by 46.9–
82.9%, the T will increase by 0.9–16.5% in both RCPs and during both future periods 
(in comparison with historical period), while GWF will increase by 0.8–1.5% and 
decrease by 0.7–8.8%. Moreover, GWS tends to increase about 2.4–13.7% or 
decrease about 5.3–48.6% in the future intervals.  
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The annual P in MIROC-ESM under RCP4.5 (RCP8.5) will decrease by 
15.6% (20%) in the far-term projection in comparison with that in the near-term 
projection. This component will decrease for both scenarios approximately by 
11.8 and 13.4% in GFDL-ESM2G, respectively. However, the simulation results 
of the GFDL-ESM2G model in the near future under RCP4.5 (RCP8.5) is about 
38.4% (8.1%) and is about 44.6% (17%) in the far future, which is more than that 
projected by the MIROC-ESM model. The T component under RCP4.5 and 
RCP8.5 in MIROC-ESM (GFDL-ESM2G) will increase approximately by 6.2 
and 15.7% (7.5 and 13.2%) via moving from near-to far-term period. 
Furthermore, the GFDL-ESM2G under RCP4.5 (RCP8.5) simulated the annual T 
in the near future by 1.8% (1.4%) and in the far future by 0.6% (3.5%) less than 
those projected by the MIROC-ESM model, respectively. The annual BW in 
MIROC-ESM under RCP4.5 (RCP8.5) will decrease by 28.4% (34.2%) in the far-
term projection in comparison with that in the near-term projection. This 
component will decrease for both scenarios approximately by 21.9 and 21.5% in 
GFDL-ESM2G, respectively. The amount of BW in GFDL-ESM2G in both future 
time periods are higher than that of MIROC-ESM. The values of GWF in the near 
future are higher than in the far future (between 0.9 to 8.7% under RCP4.5 and 
between 6.5 to 9.3% under RCP8.5) in both models and RCPs. The increasing or 
decreasing of GWS through the MIROC-ESM will be around 6.4% (6.6%) in 
comparison with GFDL-ESM2G under RCP4.5 (RCP8.5) in the near and will be 
around 41.1% (11.1%) in the far future intervals, respectively.  

Another purpose of the study is to project the conditions of Kardeh and 
Torogh dam s’ sub-basins for the near and far perspectives. In this study, Torogh 
and Kardeh dams, which are located in the southern and northern part of the KRB 
with different topography conditions, were selected as the two important dams 
located in the sub-basins 133 and 52 in order to further investigate the conditions 
of hydraulic structures in KRB (i.e., dams, which are the most important sources 
for access to water resources), respectively. The mean annual values of BW (the 
summation of WYLD (runoff) and DA_RCHG (aquifer discharge)), GWF (ET 
(evapotranspiration)), and GWS (SW (soil water content)) were extracted from 
the output.sub file via modeling in SWAT and SWAT-CUP software at different 
time periods (historical and future), and the results are presented in Table 7. 

The GFDL-ESM2G model calculated BW higher than the MIROC-ESM in 
these two sub-basins in all cases in our study. The mean annual BW increases in 
both models and periods compared to the historical period under RCP4.5 and 8.5. 
The highest mean value of BW will occur in the near future, under RCP4.5, 
simulated by the GFDL-ESM2G in both sub-basins of the dams, while the GWS 
simulation shows different results. The highest mean annual GWF and GWS in 
both sub-basins of the dams will happen in the near future under RCP4.5, 
simulated by the MIROC-ESM. On the other hand, the lowest values of BW, 
GWF, and GWS will happen in the far future under RCP4.5 by the MIROC-ESM 
model. More details are represented in Table 7. 



313 

Table 7. Mean annual water resources components in Torogh and Kardeh dams’ sub-basins 
(mm/year) 

Dams  Torogh  Kardeh 

Water components  BW GWF GWS  BW GWF GWS 

Historical period  24.9 179.7 53.9  16.9 226.2 63.2 

Near 
future 

RCP4.5 
GFDL-
ESM2G 

 285.2 161.9 46.4  267.2 198.1 164.2 

MIROC-ESM  147.5 175.0 58.1  91.2 203.6 211.1 

RCP8.5 
GFDL-
ESM2G 

 235.4 165.8 55.5  253.1 196.8 130.9 

MIROC-ESM  220.6 173.4 51.3  153.1 197.0 185.9 

Far 
future 

RCP4.5 
GFDL-
ESM2G 

 227.8 162.3 44.4  226.9 192.3 173.0 

MIROC-ESM  108.2 153.3 41.7  65.9 175.8 112.4 

RCP8.5 
GFDL-
ESM2G 

 193.5 153.9 46.0  180.4 179.2 155.8 

MIROC-ESM  170.9 158.1 44.0  117.2 178.0 161.0 

 
 

 
 

4. Summary and conclusions 

Potential use of MIROC-ESM and GFDL-ESM2G models under RCP4.5 and 8.5 
in the historical (1995–2011), near (2014–2042), and far (2043–2100) periods to 
evaluate the status of water resources components (such as BW, GWF, and GWS) 
due to changes in climatic components (such as P and T) in KRB were simulated 
via the SWAT model. The SUFI-2 algorithm is applied at a monthly time step in 
five hydrometric stations to survey sensitivity and uncertainty analysis of the 
SWAT model. The main summary of the results is illustrated as follows: 

1) Sensitivity analysis was done by the regional sensitivity analysis (RSA) 
method and the Kolmogorov-Smirnov (K-S) test. Results showed that 20 
parameters are known as sensitive parameters. The most sensitive parameters 
for outflow are: ESCO, GW_REVAP, SOL_AWC, and SFTMP, while the 
parameters of RCHRG_DP, SOL_K, and SMTMP seemed to be less 
sensitive. 

2)  The model performance criteria (such as NS, R2, P, and R-factor) were 
rather satisfying for the KRB region, and the SWAT model setup is suitable 
for KRB to evaluate the flows of BW, GWF, and GWS. 

3) MIROC-ESM and GFDL-ESM2G models indicated the highest compliance 
with the observational rainfall data in accordance with the evaluation metrics 
such as NS (MIROC-ESM=0.95 and GFDL-ESM2G=0.92), PBIAS 
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(MIROC-ESM=-2.88 and GFDL-ESM2G=-2.93), R2 (MIROC-ESM=0.97 
and GFDL-ESM2G=0.94), and RSR (MIROC-ESM=0.33 and GFDL-
ESM2G=0.37), regarding the lack of information in the study area. 

4) BW increases in all future periods and RCPs compared to the historical 
period due to an increase in precipitation patterns. The amount of BW in 
RCP8.5 was higher than in RCP4.5 in MIROC-ESM in the two future 
periods, but these values were vice versa in GFDL-ESM2G. BW was also 
higher in the near future than in the far future in both RCPs. 

5) GWF were decreased in all future periods and RCPs in comparison with the 
historical period, except in the near future in both RCPs in MIROC-ESM. 
The amount of GWF in RCP8.5 is higher than RCP4.5 in both near and far 
future in MIROC-ESM, but this component was higher in RCP8.5 in GFDL-
ESM2G than in RCP4.5 in the near future and conversely in the far future 
period. On the other hand, the values of GWF in the near future in both 
models and RCPs were higher than in the far future.  

6) The GWS demonstrated positive and negative trends in different future 
intervals compared to the historical period. This component was more in 
RCP4.5 than RCP8.5 in both models and in the near future, and these results 
are opposite in the far future. The values of GWS in the near future were 
higher than in the far future in both models in RCP4.5, and these values were 
more in the far future than in the near future in RCP8.5. 

7) The mean annual BW increased in both models and periods under RCP4.5 
and 8.5 in the Kardeh and Torogh dam s’ sub-basins, in comparison with the 
historical period. The highest mean annual GWS in both dam’s sub-basins 
will happen in the near future under RCP4.5, simulated by MIROC-ESM. 
The lowest values of BW and GWF will occur in both sub-basins in MIROC-
ESM and in the far future under RCP4.5.  

Finally, it should be noted that the use of different models and scenarios 
identifies the range of uncertainty forecasts. The existence of differences between 
results of water components in the CMIP5 model limits the range of uncertainty 
and enlarges reliability of the projections. In addition, these models might provide 
decision makers and local authorities with appropriate vision for the near and long 
perspective condition of the region to adapt and optimize water resources in the 
KRB with climate change. 

A complementry work to this study would be exploring the security of water 
resources (demand, availability, scarcity, reliability, and vulnerability) based on 
BW and GW trace by making an application of the mentioned models in this 
region and similar sub-basins with considering the changes of slope and land-use 
in the future time periods. 
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