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Abstract⎯⎯ The purpose of this study is to provide an overview of the science and 
development of atmospheric energetics, its so far matured parts to date, and the direction 
of the researches. However, we restrict ourselves to the discussion of the very basic 
results of the researches to reveal the parts the introduction of which can be suggested 
into the compulsory education of the future meteorologist. This became feasible 
especially due to the rapid development of the personal computer that makes possible the 
calculation of the atmospheric energies for students by using their own laptops, so this 
field of meteorology now can be a tactile reality for them. The founder of atmospheric 
energetics was Lorenz, who formulated for a global, dry atmosphere the concept of 
available potential energy, which is the difference between the current energy state of the 
atmosphere and a reference state with minimum energy. His basic results concerning the 
global description of atmospheric energetics have already become part of the university 
curriculum. It is important to be able to describe the energy balance of the atmosphere 
both locally as well as globally, for which the introduction of enthalpy and exergy seemed 
appropriate. The advantage of examining the dry atmosphere is that significant 
simplifications can be applied, but the atmosphere is finally moist, so research has also 
started in this direction, first with a global and then with a local approach. The key is to 
find the reference state, which is a complex, computationally demanding task. In this 
paper, we focus on the most important steps of this process and concentrate on the 
thermodynamic basis of the new concepts.  

 
Key-words: atmospheric energetics, available potential energy, moist available potential 
energy, enthalpy, exergy, thermodynamics, education 
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1. Introduction 

At the end of the 19th century, Hertz (who is famous for his long-wavelength 
electromagnetic waves discovery) delivered a lecture, which has been almost 
forgotten, about the energy budget of the earth and gave quite precise 
estimations of the energy balance of the Earth (Mulligan and Hertz, 1997). In 
atmospheric energetics, the concept of available kinetic energy was introduced 
by Margules (1906). The maximum possible kinetic energy was identified in an 
isolated part of the air, which can be achieved through adiabatic changes starting 
from rest. The real development of atmospheric energetics launched with 
Edward Lorenz's pioneering paper (Lorenz, 1955) introducing the concept of 
available energy. 

After Lorenz, many excellent researchers have worked on the field, and the 
literature on it became very rich. It can be quoted some excellent reviews and 
books on it (Dutton, 1973; Van Mieghem, 1973; Marquet, 19911; Wiin-Nielsen 
and Chen, 1993; Tailleux, 2013). However, basic textbooks on dynamic 
meteorology generally have satisfied with the discussion of Lorenz's work and, 
except for Dutton, do not step toward more recent results (Dutton, 1976; 
Panchev, 1985; Zdunkowski and Bott, 2003; Holton, 2004; Mak, 2011; Hoskins 
and James, 2014). In this paper, the basics of atmospheric energetics, 
particularly its thermodynamic, will be reviewed background. Now, atmospheric 
energetics developed into a field of meteorology which supports highly the 
complex thinking on the explanation of the global circulation and on the local 
atmospheric motion. In light of this, dynamic meteorology textbooks devote an 
undeservedly short chapter to the topic. Maybe, it could be justified on the 
grounds that the field is still undeveloped and its knowledge is constantly 
changing, but since Lorenz's work, there have been a number of achievements 
that have been clarified and can rightly become materials of the textbooks. 
Therefore, we intentionally focus only on the basic issues and are not dealing 
with those details that are still in doubt. We emphasize those parts that are worth 
discussing in the standard educational materials. 

The basics of the energetics are also processed in the book of Dési and 
Rákóczi (1970) as well as in Götz and Rákóczi (1981). The first book is based on 
the work of Margules, while the second uses Lorenz’s energy conversion ideas. 
In the work of Práger (1982), the available potential energy (ܧܲܣ) concept of 
Lorenz is detailed. Makainé (1971, 1972, 1974) analyzed in some publications 
the relevancy of the APE in synoptic problems in Hungarian. Czelnai et al. 
(1991) discusses shortly the energy conversions of the atmosphere among the 
other basic transport processes. Major et al. (2002) studied the climatic 
energetics of Hungary. 

                                                 
1 A new (2014) version of the original paper is available on the webpage of the author with valuable new 
comments. http://www.umr-cnrm.fr/spip.php?article833&lang=en 
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We overview the question of the availability and its thermodynamic base 
for atmospheric energetics. The possibility of the use of the concept of available 
potential energy for global and local processes of the atmosphere will be 
discussed, and relevant definitions for dry and moist atmospheres will be also 
investigated. Special attention will be paid to the problem of the reference state. 
From the literature, some are emphasized in Table 1 which provides the 
structure of the topic and which papers, in our opinion, can be regarded as the 
milestones of the development of atmospheric energetics. 

 
 
 

Table 1. Different cases and approaches which are in focus. (The study of Tailleux (2013) 
contains global view as well.) 

 Dry case Moist case 

Global view Lorenz, 1955 

Dutton, 1973 

Lorenz, 1978 

Local view Marquet, 1991 

Tailleux, 2013 

Harris and Tailleux, 2018 

 

2. Conversions of the energies in the atmosphere 

There are various forms of energy in the atmosphere, the almost only source of 
which is the Sun. The study of atmospheric energetics belongs to the field of 
dynamic meteorology; its general target is to describe the energy generation, 
transportation, and dissipation (Wiin-Nielsen and Chen, 1993; Götz and Rákóczi, 
1981).  

The energy of the atmosphere consists of the internal, potential, and kinetic 
energy. The specific energies are the before mentioned forms of the energy per 
unit mass (in the same order): 

 ݅ = ܿ௩ܶ , ሺ1ሻ 
 
where ܿ௩ is the specific heat of air at constant volume and ܶ is the temperature,  
 ߶ = ,ݖ݃ ሺ2ሻ 
 
where ݃ denotes the gravitational acceleration, ݖ is the altitude,  
 ݇ = ଶ 2ܞ , ሺ3ሻ 
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where ܞ is the three-dimensional velocity vector relative to the Earth. The 
previous quantities Eqs. (1) – (3) have to be integrated over the total mass of the 
atmosphere to get the total amounts of energy of the atmosphere  

ܧ) = ׬ dܸ௏ಲߩ݁ , where ݁ can be ݅, ߶ or ݇, and ஺ܸ is the volume of the 

atmosphere).  
Table 2 below shows the annual mean values of the energy forms for the 

Northern Hemisphere. It has to be pointed out, that the kinetic energy is a few 
orders of magnitude smaller, than the internal or the potential energy. Kinetic 
energy provides the energy for the midlatitude’s cyclones. It decreases in 
summer partly due to the changes in the meridional temperature gradient 
(Gertler and O’Gorman, 2019). 
 
 
 

Table 2. The annual mean values of the various energy forms for the Norther Hemisphere 
(1000–75 hPa) expressed in energy per unit area or per unit mass (Oort, 1971).  

Energy [kJ/m2] 

Internal 1674.8×106 

Potential 567.5×106 

Kinetic 1153.4×103 

 
 
 

The atmosphere is not an equilibrium thermodynamic system, but it is 
approximately in radiation balance, which means that the incident radiation 
energy equals the emitted radiation. The processes of the atmosphere, among 
them the general circulation, are governed by kinetic energy, so to understand 
these processes, we need to study the generation and dissipation of the kinetic 
energy and also its conversion from other types of energies.  

The posed questions of the atmospheric energetics in the early years of the 
twentieth century were related to the energetics of the cyclones, whether where 
the energy of the middle-latitude depressions comes from (Margules, 1910). 
According to the observations, there is not enough energy from the work against 
the pressure gradient. It turned out, that although the atmosphere contains a large 
amount of potential and internal energy, only a small part of them can be 
transformed into kinetic energy. It can be understood using a simple example 
created by Wiin-Nielsen and Chen (1993) following Margules (1910). Imagine a 
vessel filled with two fluids of different densities. The two fluids are separated 
by a vertical wall, so the fluids situate beside each other. When the wall is 
removed, the denser fluid goes to the bottom of the vessel and the less dense 
stratifies above it (the fluids do not mix). The potential energy of the fluids is 
decreasing and reaches its minimum value. Although the potential energy of the 



 

371 

fluids might be very high, its available part is only the difference between that of 
the initial and final state. This available part may be very low due to this 
process.  

The details of the following equations can be found in the work of Wiin-
Nielsen and Chen (1993) and in Hungarian in Götz and Rákóczi (1981). One of 
the most general laws of nature, the law of energy conservation also applies to 
the atmosphere. Applying the law of energy conservation to thermodynamic 
processes, we get the first law of thermodynamics. If we look for the derivatives 
of the global energy forms, the derivatives of the internal energy can be obtained 
from the integral of the internal energy density which can be expressed from the 
differential form of the first law ܿ௩݀ܶ = ݍߜ −  where the continuity ,ߙ݀݌
equation was used for getting the second term at right-hand side of the above 
mentioned equation: 

 dܫdݐ = න dܸߩሶݍ −௏ಲ න ∇݌ ∙ dܸ௏ಲܞ , ሺ4ሻ 
 
Where ݍߜ and ݍሶ  are the heat absorbed by the unit mass and the heat current to 

unit mass, respectively, ߩ = ଵఈ is the density of the air, ߙ is the specific volume 

of the air, ݌ is the pressure, and ܞ is the velocity vector of the wind. In Eq. (4), 
the first term is the internal energy generation (ܩሺܫሻ) and the second one is the 
conversion from internal energy to kinetic energy ((ܭ,ܫ)ܥ). There are two 
processes, which influence the internal energy: (1) internal energy increases if 
the atmosphere is heated, where the density is high or it is cooled, where the 
density is low, (2) internal energy decreases in divergent areas, where the 
average pressure is high or in convergent areas, where the pressure is low. 

The global form of the change of potential energy is the following: 
 ddܲݐ = න dܸ௏ಲݓߩ݃ , (5) 

 
where ݓ is the vertical wind component. Eq. (5) is the conversion from potential 
energy to kinetic energy with a minus sign (−(ܭ,ܲ)ܥ). And finally, the form of 
the change of global kinetic energy is: 
 dܭdݐ = න ∇݌ ∙ dܸܞ −௏ಲ න dܸݓߩ݃ + න ܞ ∙ ۴dܸ௏ಲ௏ಲ , (6) 

 
where ۴ is the frictional force and the other notations have been already defined. 
The first term of Eq. (6) is known from Eq. (4), which is (ܭ,ܫ)ܥ, the second 
term is the conversion from potential energy to kinetic energy ((ܭ,ܲ)ܥ), and the 
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last term is the dissipation of kinetic energy ((ܭ)ܦ). So, Eqs. (4)–(6) can be 
written as: dܫdݐ = (ܫ)ܩ − ,(ܭ,ܫ)ܥ (7) 

 ddܲݐ = ,(ܭ,ܲ)ܥ− (8) 

 dܭdݐ = (ܭ,ܲ)ܥ + (ܭ,ܫ)ܥ − .(ܭ)ܦ (9) 

 
In the case of long-time average, a steady-state can be considered, which 

means that there are no changes in the form of energies, which results that the 
time derivatives of the energy forms are zero, so we get (Götz and Rákóczi, 
1981; Wiin-Nielsen and Chen, 1993): 

(ܫ)ܩ  = (ܭ,ܫ)ܥ = ,(ܭ)ܦ (10) 
(ܭ,ܲ)ܥ  = 0. (11) 
 

Finally, it is worth mentioning, that the gravitational potential and internal 
energy in an ideal gas of hydrostatic state are proportional to each other, and 
since the atmosphere can be regarded as an ideal gas, the sum of its specific 
potential and specific internal energy can be expressed with its specific enthalpy. 
Lorenz called the sum of the internal and gravitational potential energy simply 
as potential energy, but enthalpy is a more exact name that helps to avoid 
misunderstandings originating from the mixing of the terminology. Using this, 
Lorenz got simpler equations for the cycle of the energy transformations: 

 dܪdݐ = (ܪ)ܩ − ,(ܭ,ܲ)ܥ (12) 

 dܭdݐ = (ܭ,ܪ)ܥ − ,(ܭ)ܦ (13) 

 
where ܪ = ܫ + ܲ. However, the numerical value of these conversion factors can 
only be realistic if the moisture of the air is also taken into account. Fig. 1 shows 
the scheme of the energy cycle.  
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Fig. 1. The scheme of the energy cycle. 

 
 
 

3. The equilibrium state of the atmosphere 

As we have expounded, the atmosphere is not in a thermodynamic equilibrium 
state, but it is in approximate dynamic equilibrium, because of the balance of the 
incoming and outgoing radiation. In contrast to outgoing radiation, incident 
radiation is not evenly distributed on the surface of the Earth, and due to this, 
general circulation which continuously transfers the energy from the equator 
toward the poles is developing. 

According to thermodynamics, the equilibrium state of a system can be 
found in two equivalent ways. If the system is adiabatically (entropically) 
closed, then its equilibrium state is where its energy is minimum. On the other 
hand, if the system is energetically closed, then its equilibrium state belongs to 
its minimum energy one (Callen, 1960). 

The specific entropy can be obtained by the integration of the differential 

form of the thermodynamic law ݀ݏ = ܿ௩ ௗ்் + ௣்  and with the use of the gas ߙ݀

law: 
ݏ  = ܿ௩ ln ܶܶ଴ + ܴln ,  ଴ߙߙ (14) 

 
where ݏ is the specific entropy, ଴ܶ and ߙ଴ are an arbitrary reference temperature 
and specific volume, respectively.  

Obviously, the state of a real atmosphere is neither entropically nor 
energetically closed. However, an equilibrium state can be assigned to either the 
current state of the atmosphere or some average state if one closes fictitiously 
the atmosphere and determines the extremum of the energy or the entropy. 
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Lorenz and Dutton carried out this procedure, Lorenz applied the energy 
minimum principle, while Dutton used entropy maximum for searching 
equilibrium state of the dry atmosphere (see Fig. 2).  

 
 

 

 
Fig. 2. The state of thermodynamic equilibrium based on the two principles: the approach 
of Lorenz (up) and Dutton (down). E and S denotes the global energy and entropy of the 
atmosphere, respectively.   

 
 
 

Despite that the numerical results concerning dry atmosphere do not reflect 
in every respect the real properties of the atmosphere, they can point to many 
interesting facts. They can be used in cases when the correlations between 
processes and not the exact numerical values are in focus. Several atmospheric 
energy issues are related to the storage and movement of energy that takes place 
between the components of the climate system (atmosphere, ocean, land, and 
cryosphere). As an example, we show the correlation between sea ice cover and 
energies (Table 2 and Fig 3). The details of the calculations can be seen in 
Appendix A.  

 
 
 

Table 2. Pearson correlation between the sea ice cover, the total entropy, and the total 
energy of the atmosphere (1979–2019). ERA5 database was used for the calculations (see 
Appendix A).  

 Sea ice cover Entropy 

Energy -0.81 0.99 

Entropy -0.82  
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Unsurprisingly, there is a very strong correlation between the energy and 
the entropy, and negative correlation between the energy and the sea ice cover, 
and slightly different between the entropy and the sea ice cover, this is 
illustrated by Fig. 3.  

 
 
 

 
Fig. 3. The average energy and entropy per m2 cell of a given latitude and the sea ice for 
the Northern Hemisphere. ERA5 database was used for the calculations (Appendix A).  

 
 
 
 

In most cases, the relationship between sea ice and oceanic energy is 
examined (Su and Ingersoll, 2016), but researches have also shown that there is 
also a relationship between the global energy on the top of the atmosphere and 
the ocean heat content (Trenberth et al., 2014) or between atmospheric APE and 
sea ice cover (Novak and Tailleux, 2018). Particular attention was paid to sea ice 
around Greenland and the Ross Sea (Shepherd and Wingham, 2007; Jacobs et al., 
2011). 

Fig. 4 shows the annual averages of the entropy, energy, and sea ice for the 
Northern Hemisphere. There is an increasing trend in the ocean heat content 
from 1993 (Trenberth et al., 2014), this can be seen as the decreasing trend in 
the sea ice cover in Fig. 4. 
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4. Fig. The annual averages of the sea ice, entropy, and energy per m2 for the Northern 
Hemisphere. ERA5 database was used for the calculations (see Appendix A).  

 
 
 

4. The available enthalpy 

The question of availability was addressed by Edward Lorenz in 1955 when he 
introduced the concept of available potential energy (Lorenz, 1955). His aim, 
analyzing the global circulation in the twentieth century, was to find the energy 
sources and sinks of atmospheric motions, as well as the forms of energy 
transformations that allow atmospheric motions to persist despite frictional 
dissipation.  

The available potential energy of Lorenz (ܧܲܣ) was defined to be the 
maximum part of the sum of the internal and potential energy (in hydrostatic 
case, it is the enthalpy) of the atmosphere that can be converted to kinetic energy 
under ideal conditions during isentropic processes. In the following, the term 
enthalpy will be used instead of the potential energy used by Lorenz. (The 
approximations, which Lorenz used, clearly show that Lorenz regarded the 
actual state of the atmosphere to be hydrostatic.) It follows, that there is some 
part of enthalpy that cannot be converted into kinetic energy, thus a state of 
minimum enthalpy in the atmosphere should be defined as a reference state. 
APE was defined by Lorenz as the difference between the enthalpy of the 
atmosphere’s real (actual) and reference states. To find the state of minimal 
enthalpy, he rearranged adiabatically the actual state of the atmosphere to a 
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statically completely stable and vertically stratified one, and using this state he 
calculated the ܧܲܣ. Lorenz also determined an approximate formula for the 
practical calculation of ܧܲܣ. The total enthalpy in a hydrostatic atmosphere is 
the following: 

 ܲ = න ܿ௣ܶߩdܸ௏ಲ = න න ܿ௣ܶߩdݖஶ
଴ dܣ஺ಸ , (15) 

 
where ீܣ is the surface of the Earth. To execute the integration in a pressure 
coordinate system (p-system), we use the hydrostatic approximation:  dݖ = − 1ρg  d݌. (16) 

 
Entering Eq. (16) in Eq. (15) we get:  
 ܲ = ܿ௣݃ න dܣ஺ಸ න ܶd݌௣బ଴ . (17) 

 
Applying potential temperature as vertical coordinate: 
ܧܲܣ  = ஺ܪܶ − ோܪܶ = ܿ௣2݃݌଴఑(ߢ + 1)න dܵන ൫݌(఑ାଵ) − ൯௣బ଴(఑ାଵ)̄݌ dߠ ≈

≈ ଴఑݌2ܴ݃ න dܵන (఑ାଵ)̄݌ ቆ̄݌′݌ቇଶ௣బ଴ dߠ, (18) 

 
where the total enthalpy (TH) is expressed as: ܶܪ = ܫ + ܲ = න dܵන ஶݖdݖ݃ߩ

଴ + න dܵන ஶݖ௩ܶdܿߩ
଴ = න dܵන ஶݖ௣ܶdܿߩ

଴ =
ܿ௣݃ න dܵන ܶd݌௣బ

଴ = ܿ௣݃݌଴఑ ߢ1  + 1න dܵන ஶߐ఑ାଵd݌
଴ . (19) 

 
In the equations, ܿ௣ and ܿ௩ are the specific heat under constant pressure and 
constant volume, respectively, ܴ is the specific gas constant for dry air, ߢ is the 
ratio of ܴ to ܿ௣, ݃ is the gravitational constant, ݌ is the pressure, ݌଴ is the 
pressure at the surface, which can be regarded to 1 atm, ߠ is the potential 
temperature, ܶ is the temperature, ߩ is the density, ݖ is the height, dܵ is the 
surface element of the isentropic surfaces, and ݌′ = ݌ −  .̄݌
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It shows that the APE is proportional to the pressure variance on isentrops to the 
leading order. Returning to p as vertical coordinate:  

ܧܲܣ  ≈ ଴఑݌2ܴ݃ න dܵන (఑ାଵ)̄݌ ቆ̄݌′݌ቇଶ∝
଴ dߠ = 12݃න dܵන ሜߠߙ̄ ቆ߲̅݌߲ߠቇିଵ ቆߠ ሜߠ′ ቇଶ௣బ଴ d݌. (20) 

 

Wiin-Nielsen used the 
ఏ′ఏሜ ≈ ఈ′ఈ̄  approximation, while Lorenz applied 

ఏ′ఏሜ ≈ ்′ሜ் . The 

Lorenz approximation leads to a result depending on the temperature variance 
on isobaric surfaces: 
ܧܲܣ  = න dܵන 1ܶሜ ܶ ′ଶߛ − ௣బ଴߁ d݌, (21) 

 
 
where γ  and Γ  are the actual and the adiabatic lapse rate, respectively. Wiin-
Nielsen and Chen (1993) derived a formula depending on the variance of the 
specific volume ߙ ′ and the static stability parameter ̄ߪ: 
തߪ  = തߐതߙ dߐതd݌  . (22) 

 
Eq. (22) is a definition equation, where ߪ is considered constant, and this 
constant is taken as the average value of it (̄ߪ). 
ܧܲܣ  = න dܵන 12݃ ߙ ′ଶߪത௣బ଴ d݌. (23) 

 
It can be shown that (ܭ,ܪ)ܥ and (ܪ)ܩ equal to (ܭ,ܧܲܣ)ܥ and  (ܧܲܣ)ܩ. 

5. Dutton’s entropic energy 

Dutton (Dutton and Johnson, 1967; Dutton, 1976) approached the problem of 
the equilibrium state of the atmosphere through the determination of the 
maximum entropy. He determined the maximum entropy state of the 
energetically closed atmosphere with the use of the calculus of variations. 
According to Dutton's point of view, atmospheric movements are induced by 
thermal driving forces, so at a given moment he fictitiously insulated the 
atmosphere from the external energy sources keeping the total energy constant 
and sought what end state the equalization of internal inhomogeneities leads to.  
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In a closed atmosphere, due to differences in temperature and pressure, 
various processes take place that increases entropy. When the processes stop, the 
entropy will be maximum. This is the state where the atmosphere would 
converge, if it was cut off from all the energy sources. Dutton called this 
maximum entropy state an associated state to the actual one. Dutton's calculation 
based on the calculus of variations led to a final state of the atmosphere, which 
is isotherm and hydrostatic. This result can be easily predicted also an intuitive 
way. The maximum entropy state of the atmosphere is a so-called dead state, in 
which only random thermal motion can occur, and macroscopic processes are 
perfectly impossible due to the balanced intensive state variables. In this state 
the temperature is constant, all wind velocity is zero, there is no convection, and 
consequently, the pressure is hydrostatic. 

Let the total energy and the mass at the initial state of the atmosphere be E 
and M, respectively, and let the atmosphere be an ideal gas. Then the properties 
of the associated maximum entropy state are the following. Its temperature is 

 

଴ܶ = ܯ௣ܿܧ , (24) 

 
it is motionless and the pressure obeys the barometric height law: 
(ݖ)݌  = ଴݌ exp( − ܴݖ݃ ଴ܶ), ଴݌  = ߨ4ܴாଶ݃ܯ  , (25) 

 
where ܴா is the radius of the Earth. It should be mentioned that the energy  
ܧ) =  ଴) in the actual state and in the associated state equal with each other, andܧ
while in the actual state the energy consists of internal, potential (gravitational) 
and kinetic energies (ܧ଴ = ܧ = ܫ + ܲ +  in the associated state there are only ,(ܭ
internal and potential energies (ܧ଴ = ଴ܫ + ଴ܲ =  ଴). Since the atmosphere is anܪ
ideal gas, and in the associated state it is hydrostatic, the energy equals to the 
enthalpy. 

Dutton determined the difference of the entropy of the associated and 
actual state of the atmosphere and introduced the concept of entropic energy N 
as ܰ = ଴ܶ(ܵ଴ − ܵ), where ܵ଴ and ܵ are the entropy of the associated and actual 
state, respectively. Dutton proved, that 

 ܰ = ଴ܶ(ܵ଴ − ܵ) = ܭ + ଴ܶߑ, (26) 
 

where ଴ܶߑ is the static entropic energy. To obtain this equation Dutton expresses ܵ଴ − ܵ as a sum of the leading terms of its Taylor series and a remainder term. 
The remainder term Σ  can be expressed as an integral of the positive definite 
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homogeneous second order form of the temperature and specific volume, which 
proves that it is positive. 

ߑ = න ۔ە2ߩ
௩ܿۓ ൦ ܶ − ଴ܶ଴ܶ1 + ܶ)ଵߣ − ଴ܶ)଴ܶ ൪ଶ + ൦ ߙ − ଴1ߙ଴ߙ + ߙ)ଶߣ − ଴ߙ(଴ߙ ൪ଶۙۘ

ۗdV′௏ , (27) 

 
where ߣଵ and ߣଶ are constants, which satisfies 0 ≤ ,ଵߣ ଶߣ ≤ ,ଵߣ .1  ଶ show theߣ
position where the remaining term should be calculated in the (ܶ, ଴ܶ) and 
   .interval (଴ߙ ,ߙ)

The entropic energy determines a kind of „distance” from the equilibrium 
state, and in a really closed system, it would decrease monotonously when the 
system tends to its equilibrium state. It would mean that in the atmosphere the 
general circulation ought to cease. Clearly, the atmosphere is not an isolated 
system, and therefore, the net heating provides the entropy destruction that 
permits ܰ to avoid the monotonic evolution. 

6. Comparison of the two theories 

Both theories are unrealistic, because besides the arbitrary closing of the 
atmosphere, they concern a dry atmosphere. The neglecting of the moisture 
leads by all means unrealistic results. Nevertheless, both theories have 
significantly contributed to the theoretical clarification and better understanding 
of the role of changes in the atmospheric energies in the processes of the 
atmosphere. A further problem is that both theories treat globally the 
atmospheric energies, so they are not suitable for the description of the local 
processes which can be important for example in cyclones. 

However, contrary to Lorenz's theory, where processes would no longer 
take place in the atmosphere under the constancy of entropy, this associate end 
state (under appropriate conditions) could really be reached by the atmosphere. 
Using thermodynamic argumentation only, the concept of entropy promises a 
prediction about the direction a thermodynamic process must take. Although 
this maximum entropy state is also fictitious, it is more realistic than the 
minimum energy state applied by Lorenz. Despite of this, recently Lorenz’ point 
of view dominates the energy description of the atmosphere. In our opinion, 
Dutton’s approach should be also involved in the standard curriculum, since the 
entropic approach of the atmospheric processes is at least as important as the 
energetic one. 
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7. The local definition by Marquet and Tailleux 

Marquet in his excellent paper (Marquet, 1991) re-examined the concept of ܧܲܣ 
and defined a locally practicable version of it. He placed in a historical 
perspective the development and various definitions of the concept of available 
energy and, albeit with doubts, identified it with the exergy. However, the main 
novelty of his paper is the local definition of the specific available potential 
energy as the generalization of the Lorenz’ global available potential energy and 
the entropic energy of Dutton. As the topic is very diverse and burdened by 
terminological inconsistencies, we recommend turning for details to the 
excellent papers of Keenan (1951), Haywood (1974a,b), and Marquet (1991), 
and to navigate between different technical terms. Especially the application of 
the various versions of the ܧܲܣ theory was developed by many researchers. 

The algebraic expression of the ܧܲܣ density would allow the study of 
energy conversions in open domains (e.g., cyclones, baroclinic waves), where 
boundary fluxes are also considered. Furthermore, by focusing on the energies at 
various distinct pressure levels, the tropospheric-stratospheric energy exchange 
processes could be interpreted.  

The approach of Marquet shows that the hydrodynamic application of 
available enthalpy allows the generalization of available energy concepts 
previously introduced by Lorenz and Dutton to global meteorological processes. 
Marquet defines the specific available enthalpy as: 

 ܽ௛ ≡ (ℎ − ℎ௥) − ௥ܶ(ݏ − (௥ݏ = (ℎ − ௥ܶݏ) − (ℎ௥ − ௥ܶݏ௥), (28) 
 

which can be expressed as  ܽ௛(ܶ, (݌ =  ܿ௣(ܶ − ௥ܶ) −  ܿ௣ ௥ܶln ൬ ܶܶ௥൰ + ܴ ௥ܶ ln ൬ ௥൰݌݌ , (29)  
where ℎ denotes the enthalpy and ௥ܶ and ݌௥ are the reference temperature and 
reference pressure, respectively. (The exact definitions of ௥ܶ and ݌௥ will be 
given by (43–44), and the physical interpretation of them will be discussed 
later.) An interesting property of available enthalpy in an ideal gas is that it can 
be separated into temperature- and pressure-dependent terms: 
 ܽ௛(ܶ, (݌ ≡ ்ܽ(ܶ) + ܽ௣(݌), (30) 
 
where the temperature (்ܽ) and pressure (ܽ௣) dependent terms of the specific 
enthalpy are: 
 ்ܽ = ܿ௣(ܶ − ௥ܶ) −  ܿ௣ ௥ܶln ൬ ܶܶ௥൰  , (31) 
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 ܽ௣ = ܴ ௥ܶ ln ൬ ௥൰݌݌ . (32) 

 
Marquet has derived a local energy cycle with the set of energy 

components: the specific gravitational potential (݁ீ) and the kinetic energy (݁௄), 
furthermore, with the ்ܽ and ܽ௉ ,which are the temperature (ܶ) and the pressure 
 subscript denote the conversions, generation, and dissipation of the specific ݏ dependent term of the specific enthalpy, respectively. The capital letters with (݌)
quantities. The subscripts distinguish them from those which are in Lorenz’s 
formulas without indices and which concern global quantities (the lower indices 
denote of the type of the quantities).  

 d݁ீdݐ = ݐd݁௄d (ܭ,ܩ)௦ܥ− = (ܭ,ܩ)௦ܥ+ + (ܭ,ℎ)௦ܥ − ݐd்ܽd (ܭ)௦ܦ = (ܶ,݌)௦ܥ+ − (ܭ,ℎ)௦ܥ + ݐ௦(ℎ) dܽ௣dܩ = . (ܶ,݌)௦ܥ− (33) 

 
The ܥ௦(݉,݊) conversion factors give the increase of type ݊th energy at the 
expense of the type ݉th.  

Knowing Marquet’s results, Dutton proved them on a much simpler 
intuitive “ad hoc” way, which is briefly recalled below (Dutton, 1992). 

Multiplying the equation of motion (
࢚ୢܞୢ = ݌ߘߙ− − ܓ݃ + ۴ߙ + ܓ)݂ ൈ  ܞ by ((ܞ

we got the equation: 
 d݁௄dݐ = ܞߙ− ⋅ ݌ߘ + (ܭ,ܩ)௦ܥ + ,(ܭ)௦ܦ (34) 

 
where the ݁ீ energy component is the following: 
 d݁ீdݐ = −݃ dݖdݐ = ,(ܭ,ܩ)௦ܥ− (35) 

 
and ܦ௦ is the specific rate of work of all the forces except the gravitation and 
gradient ones. From the first law of thermodynamics it can be obtained that 
 d݁௛dݐ = ߙ d݌dݐ + ሶݍ = ߙ ݐ߲݌߲ + ܞߙ ⋅ ݌ߘ + ሶݍ  , (36) 
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where ݍሶ  is the heating rate. Comparing the thermodynamic and kinetic energy 
equations it can be concluded that 
ܞߙ  ⋅ ݌ߘ = .(ܭ,ℎ)௦ܥ− (37) 
 
The specific heating rate can be written in the following form: 
ሶݍ  = ௥ܶܶ ሶݍ + ൬1 − ௥ܶܶ൰ ሶݍ . (38) 

 
The first term in the right side of Eq. (38) can be expressed with the specific 
entropy, Eq. (37):  ݏ = ்ݏ + ௣ݏ = ܿ௣ ln ܶܶ௥ − ܴ ln ௥݌݌  , (39) 

 ௥ܶܶ ݍ = ௥ܶ dݏdݐ = ௥ܶ ൬ܿ௣ d lnܶdݐ − ܴ d ln ݐd݌ ൰ . (40) 

 
Introducing 
(ܶ,݌)௦ܥ  = −ܴ ௥ܶ d ln ݐd݌ = − ܴ݌ ௥ܶ߱ , (41) 

 

where ߱ = ୢ௣ୢ௧  is the conversion from ܽ௣ to ்ܽ, as well as the generation (ܩ௦) of ்ܽ, is ܩ௦ = ߙ డ௣డ௧ + ቀ1 − ೝ்்ቁ ሶݍ  furthermore using available enthalpy components 

defined above, we can get with simple algebra the equations of the local cycle 
Marquet has found. The first term in ܩ௦ can be interpreted as the work due to 
adiabatic expansion, while the second is the heat reduced by the Carnot factor ቀ1 − ೝ்்ቁ. The local cycle gives the energy balance of a motion of an atmospheric 

parcel. Having added the four equations of the cycle, we got the equation: 
 ddݐ (݁௄ + ݁ீ + ܽ௛) = ௦ܩ − .௦ܦ (42) 

 
The right hand side of Eq. (42)  vanishes in a frictionless and isentropic steady 
flow, and then the hydrodynamic derivative equals zero, therefore, ݁௄ + ݁ீ +ܽ௛ = ܿ, ܿ = constant along any particular streamline, but it may be different on 
different streamlines. This equation is a form of the Bernoulli equation. 

The definition of the reference temperature and reference pressure is an 
intricate one. Marquet proposed and applied the following formulas: 
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1ܶ௥ = නܯ1݃ 1ܶ d ௣ܸ௣బ଴  , (43) 

 ln(݌௥) = නܯ1݃ ln(݌)௣బ଴ d ௣ܸ, (44) 

 
where d ௣ܸ notes the small domains of the air we sum up as d ௣ܸ = dܣd݌ =ܴிଶdߣd߮ܿ߮ݏ݋d݌, where ܣ = 4ܴଶߨ is the surface of the Earth, the other notations 
are the same as before. We reproduced the calculations made by Marquet with the 
ERA5 database (see Appendix A). The available enthalpy temperature- and 
pressure-dependent terms (Fig. 5) and their summation (ܽ௛) are presented in this 
paper. As the latitude increases, the value of ்ܽ decreases, and along the N30° it 
decreases below 2 kJ/kg. ்ܽ loses its zonal picture around 300 hPa, where it begins 
to increase again. In fact, the value of ܽ௣ decreases with the pressure. Fig. 6 shows ܽ௛, the sum of ்ܽ and ܽ௣. As expected, ܽ௛ is similar to ܽ௣ due to it weights 
heavier on it (ܽ௣ ൐ ்ܽ). We see a minimal ratio of a curve close to the Equator, 
which is affected by ்ܽ, where it has the highest values. 

 
Fig. 5. The available enthalpy temperature- (left) and pressure-dependent (right) terms for 
the Northern Hemisphere, made by 41 years average.  

 

 
Fig. 6. The available enthalpy for the Northern Hemisphere, made by 41 years average. 
The calculated enthalpy values are visible on the axis and on the legend.  
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8. The exergy concept in atmospheric energetics 

Marquet’s available enthalpy concept can be connected to the concept of the 
exergy of steady-state open systems. The general description and the embedding 
of exergy concepts into thermodynamics can be found, e.g., in Harmatha, 
(1982), Bejan (2006), and Dincer and Rosen (2007). However, these studies 
have summarized the thermodynamic basis focusing on engineering concern of 
the exergy theory. The atmospheric application of the concept was discussed 
earlier by Karlsson (1990) and Kucharski (1997), and the latter author cited a lot 
of further references concerning the topic. However, we think that it is worth 
rigorously looking through the basics and origin of this concept and 
investigating thoroughly its possible connections with atmospheric energetics, 
particularly with the role of the reference state. 

If a system is not in equilibrium with its environment, then spontaneous 
processes start to equalize the intensive state variables of the system and the 
environment. Due to these processes, after some time the system will be 
balanced with the environment. Up till the equilibrium befalls, energy and mass 
flow through the boundary of the system. The energy transport can be taken 
place by heat and work. We would like to control the transport processes to 
make maximum use of its internal energy be maximally exploit as work. The 
adiabatic process seems to be proper to achieve this goal. However, the 
processes with finite velocity are always irreversible which means that some 
part of the work is transformed (for example by friction) into heat and 
transferred back to internal energy. Because of this, we can conclude that the 
most efficient processes should be quasistatic, so reversible. It means that the 
maximum available work belongs to an ideal limiting case. The second law of 
thermodynamics prevents all internal energy from being transferred from the 
system as work. Naturally, the available part of the internal energy is the 
function both the state of the system and the environment. 

To determine the maximally extracted work, imagine a system that is 
insulated from its environment and search the boundary conditions under which 
the maximum work can be extracted. Let us allow the quasistatic adiabatic 
processes between the system and the environment. Then the energy can be 
changed between them by performing work. Achieving the equilibrium state, the 
internal energy ( ௦ܷ௬௦) of the system becomes a minimum ௠ܹ௔௫ = ߂ ௦ܷ௬௦.  

Connecting the system to a heat reservoir with constant temperature, the 
work performed during the setting of the balance between the system and the 
environment can be done isothermally, so the maximally extracted work equals 
the change of the free energy ௠ܹ௔௫ =  ௦௬௦ is the free energy of theܨ) .௦௬௦ܨ߂
system.) Similarly, if the system is connected to a work reservoir, the maximum 
work is ௠ܹ௔௫ = ௦௬௦, and in the case of both heat and work reservoirs, it is ௠ܹ௔௫ܪ߂ =  ௦௬௦ denote the enthalpy and free enthalpy or Gibbsܩ ௦௬௦  andܪ) .௦௬௦ܩ߂
potential of the system, respectively.) 
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In the case of a system, which is not in equilibrium with its environment, 
the balanced state can be achieved by the combination of an isothermal and an 
adiabatic path. So, first the system is brought adiabatically to the temperature of 
the environment and after isothermally to the state of the environment. Adding 
the work performed through the two ways we get the maximum work available. 
Obviously, the maximum extractable work depends on the structure of the 
system. According to this, we can obtain two results depending on that the 
system is closed or it is a stationary open system, where proper reservoirs ensure 
the constancy of the temperature or the pressure.  

 
 

 
Fig. 7. A sequence of adiabatic and isothermal paths (0 is the state of the environment).  

 

 

 
Fig. 7 shows in a T–S diagram the sequence of adiabatic and isothermal 

paths from state 1 to state 0 (which is the state of the environment). First, the 
system goes adiabatically from state 1 to state 2, where the temperature equals to 
that of state 0, after it goes isothermally to state 0. Following the thermodynamic 
path given in Fig. 7, the possible maximum of the extracted work can be 
determined. In the first adiabatic part of the path, the work performed by the 
system is ଵܹ,ଶ = ଵܷ − ܷଶ, and on the second (isothermal) part it is ଶܹ,଴ = ଶܨ  ,଴. Consequentlyܨ−

 ௠ܹ௔௫  = ଵܷ − ܷଶ + ଶܨ − ଵܨ =  ଵܷ − ܷଶ + (ܷଶ − ଶܶܵଶ) − (ܷ଴ − ଴ܶܵ଴) . (45) 
 
Taking into account that, as Fig. 6 shows, ଴ܶ = ଶܶ and ܵ଴ = ଵܵ: 
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௠ܹ௔௫  = ( ଵܷ − ଴ܶ ଵܵ) − (ܷ଴ − ଴ܶܵ଴) = ܷ߂ − ଴ܶ( ଵܵ − ܵ଴). (46) 
 
In a steady state open system, where the constancy of pressure is ensured by a 
pressure reservoir, the extractable work, during the adiabatic change of state, is ଵܹ,ଶ = ଵܪ −  ଶ, while during the isothermal path, where the system is evenܪ
connected to a heat reservoir, the work is ଶܹ,଴ = ଶܩ −  ଴. Adding these twoܩ
contributions 
 ௠ܹ௔௫ = ଵܪ − ଶܪ + ଶܩ − ଵܩ = ଵܪ − ଶܪ + ଶܪ) − ଶܶܵଶ) − ଴ܪ) − ଴ܶܵ଴) . (47) 
 
Taking into account again that ଴ܶ = ଶܶ and ܵ଴ = ଵܵ: 
 ௠ܹ௔௫ = ଵܪ) − ଴ܶ ଵܵ) − ଴ܪ) − ଴ܶܵ଴) = ܪ߂ − ଴ܶ( ଵܵ − ܵ଴). (48) 
 

Strictly speaking, the maximum work extractable from a system is called 
exergy, and the calculations above show, that it depends on the state variables 
both the system and the environment. In a broader sense, the maximum work 
available from a steady state system is called exergy, too. These expressions are 
very similar to those giving the change of the free energy of the system and the 
change of the free enthalpy of the system. The only difference is that the free 
energy and the free enthalpy are state variables of the system and depend on the 
temperature of it, while the exergy depends on the temperature of the 
environment too. 

The mathematical expressions of the exergy are formally very similar to 
those that defined for available potential energies (enthalpies) in atmospheric 
physics and introduced with various names. For example, Dutton’s entropic 
energy: 

 ܰ = ଴ܶ(ܵ଴ − ܵ), (49)  
 
and Marquet’s available enthalpy: 
 ܽ௛ ≡ (ℎ − ℎ௥) − ௥ܶ(ݏ − (௥ݏ = (ℎ − ௥ܶݏ) − (ℎ௥ − ௥ܶݏ௥) (50) 
 
are exergies. In expressions concerning atmospheric availability, reference states 
appear everywhere which can be corresponded in exergetics to properties of 
reservoirs or the surroundings. However, while in technical thermodynamics 
regarding engines, turbines, solar cells, and so on, there are well defined 
environment or physical systems which can be identified with reservoirs, in 
atmospheric physics, there are no such possibilities, the reference states have to 
be chosen arbitrarily. In the case of atmospheric flows, temperature and pressure 
reservoirs cannot be found, so the customary definitions cannot be used. It 
means that the concept of exergy is worth using in atmospheric energetics only 
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as an aid which helps through analogies. Naturally, physical state variables 
defined using arbitrarily chosen reference state can be expressed well the local 
atmospheric properties, which are suitable in the description of the local 
energetics of the atmosphere. This is expressed by Marquet in the following 
way: „The available enthalpy in this sense is a general thermodynamic local 
state function which has proved to be significant in order to be described as the 
part of (thermodynamic) energy that can be transformed into any other form of 
energy. But this exergy approach was not so easy to introduce in atmospheric 
energetics, since the temperature of the thermostat (which is the central concern 
of the exergy theories) must be replaced by the definition of a mere numerical 
value.” (Marquet, 19912)  

9. The available energy of Tailleux 

Novak and Tailleux (2018) studied the available energy density for dry air, 
hydrostatic atmosphere, while Tailleux (2018) examined the local available 
energy of compressible stratified multicomponent fluids. Relying on the work of 
Andrews (1981) and Holliday and McIntyre (1981), they have defined the 
available potential energy by using simple physical principles, essentially the 
Archimedes’ law. The available potential energy can be identified with the work 
which is necessary to bring an air parcel with fixed density from the reference 
state where it is in equilibrium to a state corresponding to the actual state of the 
atmosphere, against the buoyancy forces. This motion can be described with the 
equation: ߩ௥ dݓdݐ = ߩ) − , ݃(௥ߩ (51) 

 
where ߩ௥ and ߩ are the density of the parcel and the density of the environmental 
atmosphere, respectively. The specific buoyancy force is 
 ୢ௪ୢ௧ = ఘିఘೝఘೝ ݃ , (52)  

 
and the work performed against it is 
௔ܧ  = −න ߩ − ௥௭ߩߩ௥ߩ

௭ೝ ݖd݃ߩ = න ൬ ௥ߩ1 − ൰௣ߩ1
௣ೝ d݌ = න ௥ߙ) − ௣݌d(ߙ

௣ೝ . (53) 

 
The crucial point of this definition is the choice of the reference state as well.  

 

                                                 
2 A new (2014) version of the original paper is available on the webpage of the author with valuable new 
comments. http://www.umr-cnrm.fr/spip.php?article833&lang=en 
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Tailleux (2018) studied the local version of ܧܲܣ which includes diabatic 
sinks and sources. For simple compressible fluids, the total potential energy of 
the air portion is the sum of the available elastic energy and the ܧܲܣ. These 
energies represent the adiabatic shrinkage or expansion work required to move 
from the reference pressure to the actual pressure. Tailleux writes the ܧܲܣ 
formula using primitive equations of motion, which is simpler and more clearly 
visible than the previously published formulas for the relationship between the ܧܲܣ (density given by the Boussinesq approximation) and the basic equation of 
hydrostatics. The key step was to introduce a hybrid function of β depending on 
thermodynamic coordinates and altitude, which reminds the non-kinetic energy 
in the Bernoulli equation, which is actually the sum of the classical potential 
energy and a 

௣బఘ   term3. According to the definition of Tailleux, β concerns the 

actual state, while βr is for the reference state, and it can be expressed in the 
following forms: 

,ݖ)ߚ  ௜ܵ , (݌,ݏ = (ݖ)ߔ + ݁௧௛( ௜ܵ , ,ݏ (݌ + )ߩ(ݖ)଴݌ ௜ܵ , ,ݏ (݌ , (54) 

௥ݖ)௥ߚ  , ௜ܵ , ,ݏ (௥݌ = (௥ݖ)ߔ + ݁௧௛( ௜ܵ , (௥݌,ݏ + )ߩ(௥ݖ)଴݌ ௜ܵ , ,ݏ (௥݌ , (55) 

 
where ݁௧௛ is the specific internal (thermal) energy, ௜ܵ denotes the components of 
the fluid, the meaning of the other quantities are usual, and the variables with 
indices r stand for variables of the reference state. Tailleux proved that ߎ = ߚ −  ௥ߚ
quantity is positive definite and gives the potential energy density. 

In this context, it clarifies the relationship between the Boussinesq 
approximation and the energetics of stratified fluids and shows the physical 
background underlying the choice of reference state in the local ܧܲܣ theory. 

10. The approach of the moist atmosphere 

Cyclones of the midlatitudes strongly influence the climate. In today’s climate 
change, it is important to understand the relationship between the climate and 
the energies which drive the atmospheric processes. Besides the (vertical and 
meridional) temperature gradients, the moisture influences the ܧܲܣ. Gertler and 
O’Gorman (2019) found that increasing surface temperature causes increasing ܧܲܣ and decreasing meridional surface temperature gradient causes decreasing ܧܲܣ. The extratropical summer cyclones on the Northern Hemisphere are 

                                                 
3 Batchelor calls the 

௣బఘ  term as fictitious potential energy associated with the pressure field in his famous book: 

An Introduction to Fluid dynamics (2009 p 158). 
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weakening with the increasing temperature and moisture, however, despite the 
weakening, the convection intensifies. 

The atmosphere at a given moment is determined by its mass and the field 
of velocity. This means that it depends on the distribution of ݌ ,ܶ ,ߩ, and the 
phases of water, along with the wind components (Lorenz, 1979). Consequently, 
to use atmospheric energetics in the explanation of the real processes, the role of 
the moisture must be taken into account. The decisive step toward this was also 
taken by Lorenz (Lorenz, 1978; 1982). First, he elaborated a graphic procedure 
for determining the available energy of the moist atmosphere, and after it, he 
gave an algorithm for using this method in numerical calculations. The core 
problem is the determination of the reference state of the moist atmosphere, that 
cannot be determined as easily as in the dry case, by an analytical method 
according to entropy or humidity distribution, considered as state-of-the-art. 
However, finding the reference state is an analytical assignment problem, but it 
is computationally intensive. It is based on discretizing the atmosphere with 
equal mass domains and redistribute them by pressure. An additional difficulty 
is that with the addition of moisture, several minimal states could be created, 
consequently, it affects ܧܲܣ. 

If the atmosphere is divided into parcels of equal mass, the changes in the 
atmosphere can be identified if the redistribution of these parcels is detected. 
The goal is to find the permutation of the parcels of the atmosphere with the 
least enthalpy (Harris and Tailleux, 2018). To be able to form parcels with equal 
mass, an ݔ coordinate (following Lorenz) was created that covers different areas 
starting from the pole, but the mass belonging to them is equal. Parcels are 
characterized by the temperature T and by an indicator for the moisture, which 
can be, e.g., the specific humidity q or relative humidity ௥݂, these were zonally 
averaged over pressure levels. The Lorenz coordinate can be obtained: 

ݔ  = − ଵଶோಶమగ ׬ ׬ 2ܴாܿ߮ݏ݋dܴߣாd߮గ଴ఝഏమ = − ଵଶோಶమగ 2ܴாଶߨሾ߮݊݅ݏሿഏమఝ =   = −ቀ߮݊݅ݏ − ݊݅ݏ గଶቁ , (56)  

ݔ  = 1 − , ߮݊݅ݏ (57) 
 
where ܴா is the radius of the Earth. The sum of the potential and internal energy 
equals the enthalpy, and it is the function of the thermodynamic variables, while 
the reference state is the minimum enthalpy one. While in the case of a dry 
atmosphere the enthalpy of the atmosphere is proportional to the sensitive heat, 
in the wet atmosphere the latent heat is added to the sensitive heat due to the 
phase transitions (Lorenz, 1979). 

The calculation of moist available potential energy (ܧܲܣܯ) is based on 
Lorenz's numerical procedure, which relies on a graphical method elaborated 
also by Lorenz. The graphical method replaces the equation of a reversible 
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adiabatic process with the plotted state curve. The essence of this procedure is, 
as it was already mentioned, to divide the atmosphere into parcels by equal mass 
and to rearrange these parcels. In the wet atmosphere, the dynamics of the 
parcels are determined by three variables: the pressure, the temperature, and a 
measure of the humidity, which is, in this case, the relative humidity ௥݂, but it 
could be the specific humidity as well (Lorenz, 1978). 

In the procedure, the atmosphere is divided into ܰ equal masses, each ݌௡ 
parcel has its ݌, T, and ௥݂. All the parcels together completely cover the whole 
atmosphere between ݌஺ and ݌஻, it is assumed that the part of the atmosphere 
above ݌஻ has such a small ܧܲܣܯ that it is negligible. The space between ݌஺ and ݌஻ is divided vertically into ܯ parts, while horizontally into ܮ parts, so: ܰ = ܯ ∗ ݊ .ܮ = ݈ ∗ ܯ + ݉ , (58) 
 
where: ݊ ∈  ܰ, 0 ≤ ݈ < and 0 ,ܮ < ݉ ≤  ௡ parcel is chosen݌ The pressure of .ܯ
to be: ݌௡ = ଴݌ + , ݌߂݊ (59) 
 

where ݌଴ = ஺݌ − ௱௣ଶ  and ݌߂ =  ௣ಳି௣ಲே . The pressure of the reference state is ݌ଵ, 

 ௡, but the order is different, so the permutation of the actual state is needed݌ ,…
(Lorenz, 1978).  

The permutation can be obtained by finding the best algorithm, which sorts 
the parcels fast and accurately enough. This is the question of our time 
concerning MAPE. 

Stansifer et al. (2017) calculated the exact minimum enthalpy of the 
atmosphere for three cases. Five parcel-sorting algorithms were applied: 
Munkres algorithm or so-called Hungarian method (Kuhn, 1955), divide-and-
conquer algorithm, greedy algorithm, Lorenz’s algorithm, and the Randall and 
Wang’s (1992) algorithm. They lighted upon that the Munkres algorithm is the 
most accurate, but if the computational speed is preferred, then the divide-and-
conquer algorithm should be used. 

Harris and Tailleux (2018) re-examined the result of Stansifer et al. (2017) 
and extended the list of the analyzed algorithms, these are the  
top-down-, bottom-up-, and Emanuel algorithm. They tested these algorithms 
for more than 3700 soundings, and they found that best solution of the 
calculation of the exact ܧܲܣܯ is the Munkres algorithm, however, it has long 
runtime. When the approximation of the ܧܲܣܯ is enough Harris and Tailleux 
(2018) suggest the use of the divide-and-conquer method. 

There are cases, when some algorithms give negative ܧܲܣܯ values, which 
means that the reference state has higher energy than the actual state. The 
divide-and-conquer algorithm sometimes gives back negative values, but rarer 
than the top-down or Lorenz’ algorithms (Harris and Tailleux, 2018). 
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Peng et al. (2015) have chosen a reference state based on a model 
atmosphere, so it is independent from both the actual and the average state of the 
atmosphere. It shows that relying on the exergy theory, an arbitrary state can be 
defined as reference one. 

It can be seen that in this area of atmospheric energetics, numerous open 
questions can be found, so it is not enough mature to be involved in the 
university curricula. 

11. Summary 

The atmospheric energetics was reviewed with particular attention to 
educational aspects. The decisive step of the development of atmospheric 
energetics was the introduction of the availability concepts. Having made this by 
Lorenz, in the development of the field, the global and local description of the 
energy cycle of the dry atmosphere was made, and recently the global and local 
description of the moist atmosphere is intensively investigated. The crucial 
question of these investigations is the definition and finding of the reference 
state. The deviation of the actual energy from it gives the available energy. 
Reference state should be chosen on physical considerations, so that it should be 
an equilibrium state of the atmosphere. However, applying the exergy concept 
makes it possible to choose a referential state arbitrarily. In our opinion, 
exergetics is a useful tool for the treatment of nonequilibrium thermodynamics, 
but for the atmosphere as a whole, it should be used only through analogies. We 
think that in the current state the basic results of atmospheric energetics are ripe 
to be involved in the university curricula. This is also supported by the 
development of computer technology, which enables the reproduction of 
numerical calculations on desktop computers based on the new databases. 
Equally important would be to incorporate the foundations of exergetic methods 
into atmospheric thermodynamics curricula. 
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Appendix A. Entropy and energy calculation 

The appendix summarizes the numerical procedures, databases, and 
software, which were applied in the calculations, the results of which are 
presented in Figs. 3–6 and in Table 2. 

The target area was the Northern Hemisphere on 1°×1° spatial resolution, 
vertically 19 pressure levels were used (1000–100 hPa by 50 hPa). The 
examined time period was 1979–2019. The meteorological dataset used in this 
study was the product of the European Centre for Medium-Range Weather 
Forecasts (ECMWF), the ERA5. The ERA5 database is the fifth generation of 
the ECMWF reanalysis, available from 1979 with relatively small delay. ERA5 
provides in atmospheric, terrestrial, and oceanic data hourly approximation. It 
combines large amount of historical observations (satellite and in-situ) with 
global modeling with advanced modeling and data assimilation systems. 
ECMWF data is available in NetCDF (network common data form) form, which 
is advantageous, because such format is suitable for storing array information 
(Copernicus Climate Change Service, 2017).  

Monthly averages were calculated by using a free software called CDO 
(Climate Data Operators) developed by the Max Planck Institute (Schulzweida, 
2019). 

The obtained data were processed with the R program (R Core Team, 
2017). With the help of this software, calculations and representations were also 
made. ௥ܶ was calculated numerically from Eq. (43): 

 ଵ்ೝ = ଵ୼୲ ׬ ቂ∭ ଵ் ୢ௠ெ ቃ௧మ௧భ dݐ =  ଵ୼୲ ׬ ଵ்೘(೟)௧మ௧భ , ݐ݀   (1ܣ)

 
where ௥ܶ is a characteristic value of the terrestrial atmosphere, which remains 
close to 250 K under current climatic conditions.  

Entropy was calculated by using Eq. (39), where the second (pressure 
dependent) term diminishes after the integration, because: 

 න ܴln ൬ ௥൰௏ಲ݌݌ dܸ = ܴ݃ න dߣd߮஺ න ln௣బ଴ ൬ ௥൰݌݌ ܴிଶܿ߮ݏ݋d݌ =  
= ܴ݃ න ln௣బ଴ ൬ ௥൰݌݌ 4ܴிଶߨd݌ = ܴ݃ 4ܴிଶߨ ቆ−න ln଴

௣బ ݌d(݌) + න ln଴
௣బ ቇ݌d(௥݌) =

= ܴ݃ 4ܴிଶ݌−) ߨ଴ ln(݌௥) + ଴݌ ln(݌௥)) = 0 .  (2ܣ)

 
Total energy of the atmosphere was calculated as follows: 
 



 

396 

݁௧௢௧௔௟ = ܿ௣ܶ + 12 .ଶܞ  (3ܣ)

 
If we integrate over the atmosphere, we get the energy and the entropy for the 
atmosphere: 
௧௢௧௔௟ܧ  = 1݃෍݁௧௢௧௔௟ ܴாଶܿ߮ݏ݋dߣd߮d݌,  (4ܣ)

 ܵ = 1݃෍்ݏ ܴாଶܿ߮ݏ݋dߣd߮d݌,  (5ܣ)

 

where ݃ = 9.81
௠మ௦ , the gravitational constant, ܴா (= 6370 km) is the radius of the 

Earth, ߣ is the longitude, and ߮ is the latitude, so dߣd߮ = 1°×1° due to the 
resolution. ܽ௛ is available from Eq. (29), ܽ௣ is calculated by Eq. (32), and ்ܽ is 
reached after simplifying Eq. (31): 

 ்ܽ ≈  ܿ௣ (ܶ − ௥ܶ)ଶ2 ௥ܶ .  (6ܣ)

  


